Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
ChemCatChem ; 16(11)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-39363906

RESUMEN

To test the ability of geochemical surfaces in serpentinizing hydrothermal systems to catalyze reactions from which metabolism arose, we investigated H2-dependent CO2 reduction toward metabolic intermediates over silica-supported Co-Fe catalysts. Supported catalysts converted CO2 to various products at 180 °C and 2.0 MPa. The liquid product phase included formate, acetate, and ethanol, while the gaseous product phase consisted of CH4, CO, methanol, and C2-C7 linear hydrocarbons. The 1/1 ratio CoFe alloy with the same composition as the natural mineral wairauite yielded the highest concentrations of formate (6.0 mM) and acetate (0.8 mM), which are key intermediates in the acetyl-coenzyme A (acetyl-CoA) pathway of CO2 fixation. While Co-rich catalysts were proficient at hydrogenation, yielding mostly CH4, Fe-rich catalysts favored the formation of CO and methanol. Mechanistic studies indicated intermediate hydrogenation and C-C coupling activities of alloyed CoFe, in contrast to physical mixtures of both metals. Co in the active site of Co-Fe catalysts performed a similar reaction as tetrapyrrole-coordinated Co in the corrinoid iron-sulfur (CoFeS) methyl transferase in the acetyl-CoA pathway. In a temperature range characteristic for deeper regions of serpentinizing systems, oxygenate product formation was favored at lower, more biocompatible temperatures.

2.
Int J Exerc Sci ; 17(4): 1016-1025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39253052

RESUMEN

The COVID-19 pandemic has pushed the population to adopt increasingly sedentary lifestyles. Faced with this problem, remote training appears as a practical and inexpensive strategy to promote physically active lifestyles. The aim of this research was to compare the effects of remote versus in-person training on metabolic profiles and body composition of physically inactive adults. This research was conducted through a randomized, single-blind clinical trial with balanced block randomization. The sample consisted of 30 physically inactive subjects of both sexes between 18 and 30 years of age. The sample was selected using a voluntary public call. The 30 subjects were randomized into three groups of 10 people each. One group trained for 36 sessions remotely, and the other did so in person. The control group did not have a training plan. The variables evaluated pre- and post-intervention were body composition by bioimpedance, grip strength through dynamometry, primary outcome, and metabolic profile assessed from a capillary sample using the CARDIOCHEK equipment. In the remote training group, significant gains were evident in the variables of weight (p = 0.042, d = 1.119), muscle percentage (p = 0.032, d = 0.499), and fat percentage (p = 0.001, d = 1.132), visceral fat (p = 0.032, d = 0.424), total cholesterol (p = 0.001, d = 1.213), HDL (p = 0.001, d = 0.534), LDL (p = 0.001, d = 0.973), triglycerides (p = 0.001, d = 0.583), and grip strength (p = 0.001, d = 1.201). When comparing the effects between the remote and in-person training groups, it is evident that the improvements were similar in all variables, except for glucose, in which the in-person group had a greater value reduction.

3.
Biochim Biophys Acta Bioenerg ; 1866(1): 149514, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39326542

RESUMEN

Life is an exergonic chemical reaction. Many individual reactions in metabolism entail slightly endergonic steps that are coupled to free energy release, typically as ATP hydrolysis, in order to go forward. ATP is almost always supplied by the rotor-stator ATP synthase, which harnesses chemiosmotic ion gradients. Because the ATP synthase is a protein, it arose after the ribosome did. What was the energy currency of metabolism before the origin of the ATP synthase and how (and why) did ATP come to be the universal energy currency? About 27 % of a cell's energy budget is consumed as GTP during translation. The universality of GTP-dependence in ribosome function indicates that GTP was the ancestral energy currency of protein synthesis. The use of GTP in translation and ATP in small molecule synthesis are conserved across all lineages, representing energetic compartments that arose in the last universal common ancestor, LUCA. And what came before GTP? Recent findings indicate that the energy supporting the origin of LUCA's metabolism stemmed from H2-dependent CO2 reduction along routes that strongly resemble the reactions and transition metal catalysts of the acetyl-CoA pathway.

4.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-39165128

RESUMEN

Prokaryotic genomes constantly undergo gene flux via lateral gene transfer, generating a pangenome structure consisting of a conserved core genome surrounded by a more variable accessory genome shell. Over time, flux generates change in genome content. Here, we measure and compare the rate of genome flux for 5655 prokaryotic genomes as a function of amino acid sequence divergence in 36 universally distributed proteins of the informational core (IC). We find a clock of gene content change. The long-term average rate of gene content flux is remarkably constant across all higher prokaryotic taxa sampled, whereby the size of the accessory genome-the proportion of the genome harboring gene content difference for genome pairs-varies across taxa. The proportion of species-level accessory genes per genome, varies from 0% (Chlamydia) to 30%-33% (Alphaproteobacteria, Gammaproteobacteria, and Clostridia). A clock-like rate of gene content change across all prokaryotic taxa sampled suggest that pangenome structure is a general feature of prokaryotic genomes and that it has been in existence since the divergence of bacteria and archaea.


Asunto(s)
Archaea , Bacterias , Evolución Molecular , Genoma Arqueal , Genoma Bacteriano , Bacterias/genética , Bacterias/clasificación , Archaea/genética , Archaea/clasificación , Transferencia de Gen Horizontal , Filogenia
5.
Acc Chem Res ; 57(16): 2267-2278, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39083571

RESUMEN

ConspectusLife is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO2 fixation. In the acetyl-CoA pathway, electrons from H2 reduce CO2 to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H2 and CO2 react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H2 and CO2 to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H2-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO2 with H2 in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H2 as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H2 can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, S-adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H2 and CO2 to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H2-producing, serpentinizing hydrothermal vent.


Asunto(s)
Acetilcoenzima A , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Metano/química , Metano/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Hidrógeno/química , Hidrógeno/metabolismo , Termodinámica
6.
Biochim Biophys Acta Bioenerg ; 1865(4): 149495, 2024 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004113

RESUMEN

Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.


Asunto(s)
Planeta Tierra , Oxígeno , Oxígeno/metabolismo , Oxígeno/química , Fotosíntesis , Cianobacterias/enzimología , Cianobacterias/metabolismo , Atmósfera/química
7.
FEBS Lett ; 598(14): 1692-1714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750628

RESUMEN

Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.


Asunto(s)
Oxígeno , Oxígeno/metabolismo , Aerobiosis , Filogenia , Células Procariotas/metabolismo , Evolución Molecular , Oxidación-Reducción , Enzimas/metabolismo , Enzimas/genética
8.
Chem ; 10(5): 1528-1540, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38803519

RESUMEN

Hydrogen (H2) has powered microbial metabolism for roughly 4 billion years. The recent discovery that it also fuels geochemical analogs of the most ancient biological carbon fixation pathway sheds light on the origin of metabolism. However, it remains unclear whether H2 can sustain more complex nonenzymatic reaction networks. Here, we show that H2 drives the nonenzymatic reductive amination of six biological ketoacids and glyoxylate to give the corresponding amino acids in good yields using ammonium concentrations ranging from 6 to 150 mM. Catalytic amounts of nickel or ground meteorites enable these reactions at 22°C and pH 8. The same conditions promote an H2-dependent ketoacid-forming reductive aldol chemistry that co-occurs with reductive amination, producing a continuous reaction network resembling amino acid synthesis in the metabolic core of ancient microbes. The results support the hypothesis that the earliest biochemical networks could have emerged without enzymes or RNA.

9.
Science ; 383(6688): eadj9223, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38484069

RESUMEN

Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.


Asunto(s)
Celulosa , Fibras de la Dieta , Microbioma Gastrointestinal , Ruminococcus , Humanos , Celulosa/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Ruminococcus/clasificación , Ruminococcus/enzimología , Ruminococcus/genética , Fibras de la Dieta/metabolismo , Filogenia , Desarrollo Industrial
10.
Proc Natl Acad Sci U S A ; 121(13): e2318969121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513105

RESUMEN

Autotrophic theories for the origin of metabolism posit that the first cells satisfied their carbon needs from CO2 and were chemolithoautotrophs that obtained their energy and electrons from H2. The acetyl-CoA pathway of CO2 fixation is central to that view because of its antiquity: Among known CO2 fixing pathways it is the only one that is i) exergonic, ii) occurs in both bacteria and archaea, and iii) can be functionally replaced in full by single transition metal catalysts in vitro. In order to operate in cells at a pH close to 7, however, the acetyl-CoA pathway requires complex multi-enzyme systems capable of flavin-based electron bifurcation that reduce low potential ferredoxin-the physiological donor of electrons in the acetyl-CoA pathway-with electrons from H2. How can the acetyl-CoA pathway be primordial if it requires flavin-based electron bifurcation? Here, we show that native iron (Fe0), but not Ni0, Co0, Mo0, NiFe, Ni2Fe, Ni3Fe, or Fe3O4, promotes the H2-dependent reduction of aqueous Clostridium pasteurianum ferredoxin at pH 8.5 or higher within a few hours at 40 °C, providing the physiological function of flavin-based electron bifurcation, but without the help of enzymes or organic redox cofactors. H2-dependent ferredoxin reduction by iron ties primordial ferredoxin reduction and early metabolic evolution to a chemical process in the Earth's crust promoted by solid-state iron, a metal that is still deposited in serpentinizing hydrothermal vents today.


Asunto(s)
Ferredoxinas , Hierro , Ferredoxinas/metabolismo , Hierro/metabolismo , Hidrógeno/metabolismo , Electrones , Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Oxidación-Reducción , Flavinas/metabolismo
11.
Chempluschem ; 88(11): e202300270, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37812146

RESUMEN

The Moon-forming impact vaporized part of Earth's mantle, and turned the rest into a magma ocean, from which carbon dioxide degassed into the atmosphere, where it stayed until water rained out to form the oceans. The rain dissolved CO2 and made it available to react with transition metal catalysts in the Earth's crust so as to ultimately generate the organic compounds that form the backbone of microbial metabolism. The Moon-forming impact was key in building a planet with the capacity to generate life in that it converted carbon on Earth into a homogeneous and accessible substrate for organic synthesis. Today all ecosystems, without exception, depend upon primary producers, organisms that fix CO2 . According to theories of autotrophic origin, it has always been that way, because autotrophic theories posit that the first forms of life generated all the molecules needed to build a cell from CO2 , forging a direct line of continuity between Earth's initial CO2 -rich atmosphere and the first microorganisms. By modern accounts these were chemolithoautotrophic archaea and bacteria that initially colonized the crust and still inhabit that environment today.


Asunto(s)
Ecosistema , Luna , Dióxido de Carbono/química , Planeta Tierra , Atmósfera/química
12.
Front Microbiol ; 14: 1257597, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854333

RESUMEN

Serpentinization in hydrothermal vents is central to some autotrophic theories for the origin of life because it generates compartments, reductants, catalysts and gradients. During the process of serpentinization, water circulates through hydrothermal systems in the crust where it oxidizes Fe (II) in ultramafic minerals to generate Fe (III) minerals and H2. Molecular hydrogen can, in turn, serve as a freely diffusible source of electrons for the reduction of CO2 to organic compounds, provided that suitable catalysts are present. Using catalysts that are naturally synthesized in hydrothermal vents during serpentinization H2 reduces CO2 to formate, acetate, pyruvate, and methane. These compounds represent the backbone of microbial carbon and energy metabolism in acetogens and methanogens, strictly anaerobic chemolithoautotrophs that use the acetyl-CoA pathway of CO2 fixation and that inhabit serpentinizing environments today. Serpentinization generates reduced carbon, nitrogen and - as newer findings suggest - reduced phosphorous compounds that were likely conducive to the origins process. In addition, it gives rise to inorganic microcompartments and proton gradients of the right polarity and of sufficient magnitude to support chemiosmotic ATP synthesis by the rotor-stator ATP synthase. This would help to explain why the principle of chemiosmotic energy harnessing is more conserved (older) than the machinery to generate ion gradients via pumping coupled to exergonic chemical reactions, which in the case of acetogens and methanogens involve H2-dependent CO2 reduction. Serpentinizing systems exist in terrestrial and deep ocean environments. On the early Earth they were probably more abundant than today. There is evidence that serpentinization once occurred on Mars and is likely still occurring on Saturn's icy moon Enceladus, providing a perspective on serpentinization as a source of reductants, catalysts and chemical disequilibrium for life on other worlds.

13.
J Am Chem Soc ; 145(36): 19768-19779, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642297

RESUMEN

Formamide can serve as a key building block for the synthesis of organic molecules relevant to premetabolic processes. Natural pathways for its synthesis from CO2 under early earth conditions are lacking. Here, we report the thermocatalytic conversion of CO2 and H2O to formate and formamide over Ni-Fe nitride heterostructures in the absence of synthetic H2 and N2 under mild hydrothermal conditions. While water molecules act as both a solvent and hydrogen source, metal nitrides serve as nitrogen sources to produce formamide in the temperature range of 25-100 °C under 5-50 bar. Longer reaction times promote the C-C bond coupling and formation of acetate and acetamide as additional products. Besides liquid products, methane and ethane are also produced as gas-phase products. Postreaction characterization of Ni-Fe nitride particles reveals structural alteration and provides insights into the potential reaction mechanism. The findings indicate that gaseous CO2 can serve as a carbon source for the formation of C-N bonds in formamide and acetamide over the Ni-Fe nitride heterostructure under simulated hydrothermal vent conditions.

14.
Sci Adv ; 9(32): eadj4493, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556561

RESUMEN

Genes for cardiolipin and ceramide synthesis occur in some alphaproteobacterial genomes. They shed light on mitochondrial origin and signaling in the first eukaryotic cells.


Asunto(s)
Mitocondrias , Simbiosis , Simbiosis/genética , Mitocondrias/genética , Células Eucariotas/metabolismo , Genes Mitocondriales , Filogenia , Evolución Biológica , Evolución Molecular
15.
Angew Chem Int Ed Engl ; 62(22): e202218189, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-36951652

RESUMEN

Abiotic synthesis of formate and short hydrocarbons takes place in serpentinizing vents where some members of vent microbial communities live on abiotic formate as their main carbon source. To better understand the catalytic properties of Ni-Fe minerals that naturally exist in hydrothermal vents, we have investigated the ability of synthetic Ni-Fe based nanoparticular solids to catalyze the H2 -dependent reduction of CO2 , the first step required for the beginning of pre-biotic chemistry. Mono and bimetallic Ni-Fe nanoparticles with varied Ni-to-Fe ratios transform CO2 and H2 into intermediates and products of the acetyl-coenzyme A pathway-formate, acetate, and pyruvate-in mM range under mild hydrothermal conditions. Furthermore, Ni-Fe catalysts converted CO2 to similar products without molecular H2 by using water as a hydrogen source. Both CO2 chemisorption analysis and post-reaction characterization of materials indicate that Ni and Fe metals play complementary roles for CO2 fixation.

16.
Genome Biol Evol ; 15(3)2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752808

RESUMEN

All eukaryotes have linear chromosomes that are distributed to daughter nuclei during mitotic division, but the ancestral state of nuclear division in the last eukaryotic common ancestor (LECA) is so far unresolved. To address this issue, we have employed ancestral state reconstructions for mitotic states that can be found across the eukaryotic tree concerning the intactness of the nuclear envelope during mitosis (open or closed), the position of spindles (intranuclear or extranuclear), and the symmetry of spindles being either axial (orthomitosis) or bilateral (pleuromitosis). The data indicate that the LECA possessed closed orthomitosis with intranuclear spindles. Our reconstruction is compatible with recent findings indicating a syncytial state of the LECA, because it decouples three main processes: chromosome division, chromosome partitioning, and cell division (cytokinesis). The possession of closed mitosis using intranuclear spindles adds to the number of cellular traits that can now be attributed to LECA, providing insights into the lifestyle of this otherwise elusive biological entity at the origin of eukaryotic cells. Closed mitosis in a syncytial eukaryotic common ancestor would buffer mutations arising at the origin of mitotic division by allowing nuclei with viable chromosome sets to complement defective nuclei via mRNA in the cytosol.


Asunto(s)
Eucariontes , Células Eucariotas , Eucariontes/genética , Mitosis , Núcleo Celular , Citosol
17.
Nat Commun ; 14(1): 570, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732515

RESUMEN

The chemical reactions that formed the building blocks of life at origins required catalysts, whereby the nature of those catalysts influenced the type of products that accumulated. Recent investigations have shown that at 100 °C awaruite, a Ni3Fe alloy that naturally occurs in serpentinizing systems, is an efficient catalyst for CO2 conversion to formate, acetate, and pyruvate. These products are identical with the intermediates and products of the acetyl-CoA pathway, the most ancient CO2 fixation pathway and the backbone of carbon metabolism in H2-dependent autotrophic microbes. Here, we show that Ni3Fe nanoparticles prepared via the hard-templating method catalyze the conversion of H2 and CO2 to formate, acetate and pyruvate at 25 °C under 25 bar. Furthermore, the 13C-labeled pyruvate can be further converted to acetate, parapyruvate, and citramalate over Ni, Fe, and Ni3Fe nanoparticles at room temperature within one hour. These findings strongly suggest that awaruite can catalyze both the formation of citramalate, the C5 product of pyruvate condensation with acetyl-CoA in microbial carbon metabolism, from pyruvate and the formation of pyruvate from CO2 at very moderate reaction conditions without organic catalysts. These results align well with theories for an autotrophic origin of microbial metabolism under hydrothermal vent conditions.

18.
J Am Chem Soc ; 144(46): 21232-21243, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350298

RESUMEN

Serpentinizing hydrothermal systems generate H2 as a reductant and harbor catalysts conducive to geochemical CO2 conversion into reduced carbon compounds that form the core of microbial autotrophic metabolism. This study characterizes mineral catalysts at hydrothermal vents by investigating the interactions between catalytically active cobalt sites and silica-based support materials on H2-dependent CO2 reduction. Heteroatom incorporated (Mg, Al, Ca, Ti, and Zr), ordered mesoporous silicas are applied as model support systems for the cobalt-based catalysts. It is demonstrated that all catalysts surveyed convert CO2 to methane, methanol, carbon monoxide, and low-molecular-weight hydrocarbons at 180 °C and 20 bar, but with different activity and selectivity depending on the support modification. The additional analysis of the condensed product phase reveals the formation of oxygenates such as formate and acetate, which are key intermediates in the ancient acetyl-coenzyme A pathway of carbon metabolism. The Ti-incorporated catalyst yielded the highest concentrations of formate (3.6 mM) and acetate (1.2 mM) in the liquid phase. Chemisorption experiments including H2 temperature-programmed reduction (TPR) and CO2 temperature-programmed desorption (TPD) in agreement with density functional theory (DFT) calculations of the adsorption energy of CO2 suggest metallic cobalt as the preferential adsorption site for CO2 compared to hardly reducible cobalt-metal oxide interface species. The ratios of the respective cobalt species vary depending on the interaction strength with the support materials. The findings reveal robust and biologically relevant catalytic activities of silica-based transition metal minerals in H2-rich CO2 fixation, in line with the idea that autotrophic metabolism emerged at hydrothermal vents.


Asunto(s)
Dióxido de Carbono , Dióxido de Silicio , Dióxido de Carbono/química , Titanio , Cobalto/química , Formiatos , Acetatos
19.
Front Physiol ; 13: 977391, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324306

RESUMEN

Oxygen sensing mechanisms are essential for metazoans, their origin and evolution in the context of oxygen in Earth history are of interest. To trace the evolution of a main oxygen sensing mechanism among metazoans, the hypoxia induced factor, HIF, we investigated the phylogenetic distribution and phylogeny of 11 of its components across 566 eukaryote genomes. The HIF based oxygen sensing machinery in eukaryotes can be traced as far back as 800 million years (Ma) ago, likely to the last metazoan common ancestor (LMCA), and arose at a time when the atmospheric oxygen content corresponded roughly to the Pasteur point, or roughly 1% of present atmospheric level (PAL). By the time of the Cambrian explosion (541-485 Ma) as oxygen levels started to approach those of the modern atmosphere, the HIF system with its key components HIF1α, HIF1ß, PHD1, PHD4, FIH and VHL was well established across metazoan lineages. HIF1α is more widely distributed and therefore may have evolved earlier than HIF2α and HIF3α, and HIF1ß and is more widely distributed than HIF2ß in invertebrates. PHD1, PHD4, FIH, and VHL appear in all 13 metazoan phyla. The O2 consuming enzymes of the pathway, PHDs and FIH, have a lower substrate affinity, Km, for O2 than terminal oxidases in the mitochondrial respiratory chain, in line with their function as an environmental signal to switch to anaerobic energy metabolic pathways. The ancient HIF system has been conserved and widespread during the period when metazoans evolved and diversified together with O2 during Earth history.

20.
Proc Natl Acad Sci U S A ; 119(46): e2216017119, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36288265

Asunto(s)
Planeta Tierra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA