Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Heliyon ; 10(11): e32316, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38947472

RESUMEN

While hydroponics is considered an efficient vegetable production system, there is a compelling need to investigate the efficiency of the current generic nutrient dosing recommendation primarily based on electrical conductivity (EC) measurements. Such information is critical to fine-tune and optimize the current hydroponic management practices for improved nutrient uptake efficiency. This study investigated the dynamics of some micro and macronutrients (N, P, Ca, Mg, K, Fe, and Mn) in a recirculating nutrient film technique (NFT) hydroponic system under lettuce cultivation. The research was conducted in an indoor controlled environment growth chamber with lettuce grown in different EC levels (1.2 and 1.6 dS m-1). Each treatment had four hydroponic cultivation units, each one with 24 plants. Nutrient solution and tissue samples were collected two to three times per week. Nutrient dynamics, including nutrient uptake efficiencies and environmental losses, were calculated using a mass balance approach. The effects of EC level on fresh and dry lettuce biomass and nutrient uptake were insignificant. Observed variations in nutrient solution composition during lettuce cultivation included the almost complete removal of ammonia nitrogen, nitrate decreases towards the end of the experiment, consistent increases in aqueous Ca concentration, and corresponding decreases in K and Mn. Average N losses ranged between 27 and 40 %, presumably through denitrification, while 10-14 % of N was assimilated into the plant biomass. The remaining N in the recirculating nutrient solution was estimated to be between 50 and 59 %. The average P loss was 11-35 %, likely due to precipitation, while 52-77 % remained in the nutrient solution. Nutrient uptake efficiencies averaged 19-31 % K, 12-21 % P, 9-16 % Mn, 4-6 % Ca, 3-4 % Mg, and 2-4 % Fe. These results suggest that elevated nutrient concentrations in recirculating nutrient solutions led to losses and underutilization. Findings from this study provide a comprehensive dataset critical to improving hydroponic nutrient management beyond N and P. Hydroponic nutrient management should target providing essential nutrients needed by plants at the correct proportions considering the plant growth stage.

2.
J Food Sci ; 89(1): 513-522, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37983755

RESUMEN

Belgian Saisons and Lambics are two well-known examples in the brewing industry of mixed fermentations, combination of two or more yeast and/or bacteria strains. The purpose of this study was to determine the impact different pitch rates of Saccharomyces cerevisiae (traditional brewing yeast) and S. cerevisiae var. diastaticus (a variant associated with Belgian styles) had on the fermentation kinetics and concentration of the volatile compounds in the finished beers. A series of brews were performed utilizing ratios of S. cerevisiae and diastaticus. The fermentations were heavily monitored, and a model was used to fit fermentation variables. It was found that mixed fermentations produced behaviors that were predictable and proportional to the mixture ratios. As expected, the pure cultural fermentations of diastaticus had a slower fermentation midpoint (M) at 45.45 h versus 28.28 h for S. cerevisiae with the mixed ones falling in between the two. Flavor and aroma play a key role in the acceptability of beer. The mixed fermentations showed a combination of the two different yeast strains aromatic profiles. When combined, there was a strong linearity between alcohols (R2  = 0.94), esters (R2  = 0.89), and the overall total (R2  = 0.91) volatile compounds. PRACTICAL APPLICATION: Modeling is a widely utilized tool in several different fields. The purpose of this research is to apply modeling techniques to describe the fermentation speed and flavor profile of a mixed fermentation between S. cerevisiae and diastaticus. The equations from this data can be used by brewers for product development purposes to make beers with certain flavor profiles within a desired timeframe.


Asunto(s)
Vino , Levadura Seca , Saccharomyces cerevisiae , Fermentación , Cerveza/análisis , Alcoholes/análisis , Vino/análisis
3.
Front Bioeng Biotechnol ; 11: 1242927, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076437

RESUMEN

Anaerobic membrane bioreactors (AnMBR) have been used for treating high-strength industrial wastewater at full-scale and the potential to use them for mainstream municipal wastewater treatment presents an important opportunity to turn energy-intensive plants into net-energy producers. However, several limitations of the AnMBR technology have prevented their adoption in the municipal wastewater industry, namely, high membrane cleaning energy demand and low membrane flux. This study demonstrated a novel AnMBR configuration that uses a commercially available cloth filter technology to address the key limitations of cleaning energy and membrane flux. The cloth filter anaerobic membrane bioreactor (CFAnMBR) is comprised of an anaerobic fixed-film bioreactor coupled with a cloth filter membrane with nominal pore size of 5 µm. The pilot CFAnMBR was operated for 150 days through the winter at a municipal wastewater plant in central Illinois (minimum/average influent temperature 5/13°C). The CFAnMBR increased membrane flux by more than 2 orders of magnitude (3,649 ± 1,246 L per meter squared per hour) and reduced cleaning energy demand by 78%-92% (0.0085 kWh/m3) relative to previously reported AnMBR configurations. With the CFAnMBR, average chemical oxygen demand and total suspended solids removal were 66% and 91%, respectively, and were shown to be increased up to 88% and 96% by in-line coagulant dosing with ferric chloride. Average headspace methane yield was 154 mL CH4/g CODremoved by the end of the study period with influent temperatures of 11°C± 4°C. The CFAnMBR resolves major limitations of AnMBR technology by employing a commercially-available technology already used for other municipal wastewater treatment applications.

4.
Sci Total Environ ; 879: 163031, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36972885

RESUMEN

World food production must increase in the coming years with minimal environmental impact for food and nutrition security. Circular Agriculture has emerged as an approach to minimize non-renewable resource depletion and encourage by-product reuse. The goal of this study was to evaluate Circular Agriculture as a tool to increase food production and N recovery. The assessment was conducted for two Brazilian farms (Farm 1; Farm 2) with Oxisols under no-till and a diversified cropping system, including five species of grain, three cover crop species, and sweet potato. Both farms implemented an annual two-crop rotation and an integrated crop-livestock system with beef cattle confined for 2-years. Grain and forage from the fields, leftovers from silos, and crop residues were used as cattle feed. Grain yield was 4.8 and 4.5 t ha-1 for soybean, 12.5 and 12.1 t ha-1 for maize, and 2.6 and 2.4 t ha-1 for common bean, for Farm 1 and Farm 2, respectively, which is higher than the national average. The animals gained 1.2 kg day-1 of live weight. Farm 1 exported 246 kg ha-1 year-1 of N in grains, tubers, and animals, while 216 kg ha-1 year-1 was added as fertilizer and N to cattle. Farm 2 exported 224 kg ha-1 year-1 in grain and animals, while 215 kg ha-1 year-1 was added as fertilizer and N to cattle. Circular practices, i.e., no-till, crop rotation, year-round soil covered, maize intercropped with brachiaria ruziziensis, biological N fixation, and crop-livestock integration, increased crop yield and decreased N application by 14.7 % (Farm 1) and 4.3 % (Farm 2). 85 % of the N consumed by the confined animals was excreted and converted into organic compost. Overall, circular practices associated with adequate crop management allowed recovering high rate of applied N, reducing environmental impacts, and increasing food production with lower production costs.


Asunto(s)
Agricultura , Fertilizantes , Animales , Bovinos , Granjas , Ambiente , Suelo , Productos Agrícolas , Zea mays
5.
Environ Technol ; 41(10): 1322-1336, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30301429

RESUMEN

Bioaugmentation in the acid-phase of a two-phase anaerobic membrane bioreactor (AnMBR) treating primary sludge was investigated as a means for targeting and improving hydrolysis and acetogenesis. Bioaugmentation was carried out using a proprietary bioculture blend containing a mixture of hydrolytic, acidogenic, and acetogenic microorganisms. This mixture was added on its own and in combination with recycled anaerobic sludge from the methane-phase of the AnMBR. Both bioaugmentation strategies had a positive effect on overall hydrolysis (25-38%), and acid-phase acetic acid generation (31-52%) compared to operation without bioaugmentation. This led to subsequent increases in average methane production (10-13%), and greater average solids reduction (25-55%). Microbial community analysis using 16S Illumina MiSeq generated sequences revealed increased relative abundance of Acetobacter and Syntrophomonas species in bioaugmented communities, suggesting these to be key players in improvements in process performance. However, in general the relative abundance of bioaugmented microorganisms within bioaugmented communities was relatively low, highlighting the need to optimize the bioculture composition and dosage. Overall, bioaugmentation was found to benefit the conversion of primary sludge to methane, when initial solubility was relatively low. Future work should optimize the bioculture composition and dosing strategy to improve its effectiveness and long-term stability, and minimize associated operating costs.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Hidrólisis , Metano
6.
Water Res ; 126: 285-298, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28965031

RESUMEN

The addition of ion-exchange resin in a two-phase continuous AnMBR system treating primary sludge at ambient temperature (20 °C) was investigated as a means to improve reactor recovery after organic shock-loading. Four commercially available anion-exchange resins were evaluated for their ability to sorb soluble organics, specifically volatile fatty acids (VFA), from AnMBR effluent. The strong-base resin, Purolite TANEX, was determined the best resin for deployment in the continuous AnMBR having achieved the greatest removal of soluble chemical oxygen demand (sCOD) (up to 36%) and acetic acid (up to 48%) in preliminary batch testing. Addition of 100 and 300 g/L TANEX in the AnMBR system improved effluent quality reducing effluent COD concentrations by 48 and 75%, respectively, under normal operating conditions. After shock-loading with 16,000 mg COD/L as acetic acid, reactor recovery in terms of methane production was 9-58% faster with the addition of TANEX than without, under controlled pH conditions (pH: 7.4). After shock-loading the system twice without the addition of TANEX it was found that recovery improved by 19% suggesting that acclimation of the microbial community also played a role in reactor recovery. Microbial community analysis using 16 S Illumina MiSeq sequencing confirmed changes in the microbial community did occur in response to shock-loading, with higher relative abundance of Methanoscarcina in the majority of post-shock-load microbial communities. The highest relative abundance of Methanoscarcina (51-58%) was seen during operating periods with the addition of TANEX resin, leading to the conclusion that addition of the TANEX resin benefited reactor recovery by serving as a temporary physio-chemical sink for the excess acetic acid, allowing the microbial community time to adjust to their new environmental conditions and become better able to process the higher levels of acetic acid associated with the organic shock.


Asunto(s)
Reactores Biológicos , Ácidos Grasos Volátiles/análisis , Metano/metabolismo , Consorcios Microbianos , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Resinas de Intercambio Iónico
7.
Water Sci Technol ; 72(12): 2139-47, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26676001

RESUMEN

Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.


Asunto(s)
Bacterias Anaerobias/metabolismo , Biocombustibles , Aguas Residuales/química , Purificación del Agua/métodos , Anaerobiosis , Biomasa , Carbón Orgánico/metabolismo , Estudios de Factibilidad , Hongos/metabolismo , Calor , Concentración de Iones de Hidrógeno , Petróleo , Purificación del Agua/normas
8.
Bioresour Technol ; 189: 62-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25864032

RESUMEN

This study investigated routine bioaugmentation in the acid-phase of a two-phase anaerobic digestion (AD) process treating a largely cellulosic waste material generated from sweet corn processing. A proprietary cellulolytic bioculture was used for bioaugmentation with the aim of increasing substrate hydrolysis to improve overall methanogenic efficiency. In a sequencing batch experiment routine bioaugmentation achieved significantly greater soluble chemical oxygen demand (sCOD) generation (+25%) and methane production (+15%) compared to one-time bioaugmentation. In a continuous bench-scale system, routine bioaugmentation increased acid-phase sCOD by 29-68% and acetic acid concentrations by 31-34%. This benefit to hydrolysis and acetogenesis subsequently led to sustained increase in methane production (+56%) compared to non-bioaugmentation. A cursory economic analysis indicated that routine bioaugmentation could improve the economics of corn waste AD by $27-$34/dry tonne of waste. Overall, routine bioaugmentation showed significant promise for improving AD of corn waste by achieving sustained increases in substrate hydrolysis and methane production.


Asunto(s)
Bacterias/metabolismo , Celulosa/metabolismo , Eliminación de Residuos/métodos , Anaerobiosis , Técnicas de Cultivo Celular por Lotes/economía , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos/microbiología , Ácidos Grasos Volátiles/análisis , Metano/biosíntesis , Eliminación de Residuos/economía , Solubilidad , Factores de Tiempo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA