Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Immunometabolism (Cobham) ; 5(2): e00023, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128293

RESUMEN

Adipose tissue is a complex organ whose functions go beyond being an energy reservoir to sustain proper body energy homeostasis. Functioning as an endocrine organ, the adipose tissue has an active role in the body's metabolic balance regulation through several secreted factors generally termed as adipokines. Thus, adipose tissue dysregulation in chronic kidney disease (CKD) can have a deep impact in the pathophysiology of diseases associated with metabolic dysregulation including metabolic syndrome, insulin resistance (IR), atherosclerosis, and even cachexia. CKD is a progressive disorder linked to increased morbidity and mortality. Despite being characterized by renal function loss, CKD is accompanied by metabolic disturbances such as dyslipidemia, protein energy wasting, chronic low-grade inflammation, IR, and lipid redistribution. Thus far, the mechanisms by which these changes occur and the role of adipose tissue in CKD development and progression are unclear. Further understanding of how these factors develop could have implications for the management of CKD by helping identify pharmacological targets to improve CKD outcomes.

2.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362298

RESUMEN

Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.


Asunto(s)
Enfermedades Musculares , Insuficiencia Renal Crónica , Ratones , Animales , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Enfermedades Musculares/metabolismo , Glucosa/metabolismo , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Ácidos Grasos/metabolismo , Adenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA