RESUMEN
Rapid and accessible testing was paramount in the management of the COVID-19 pandemic. Our university established KCL TEST: a SARS-CoV-2 asymptomatic testing programme that enabled sensitive and accessible PCR testing of SARS-CoV-2 RNA in saliva. Here, we describe our learnings and provide our blueprint for launching diagnostic laboratories, particularly in low-resource settings. Between December 2020 and July 2022, we performed 158277 PCRs for our staff, students, and their household contacts, free of charge. Our average turnaround time was 16 h and 37 min from user registration to result delivery. KCL TEST combined open-source automation and in-house non-commercial reagents, which allows for rapid implementation and repurposing. Importantly, our data parallel those of the UK Office for National Statistics, though we detected a lower positive rate and virtually no delta wave. Our observations strongly support regular asymptomatic community testing as an important measure for decreasing outbreaks and providing safe working spaces. Universities can therefore provide agile, resilient, and accurate testing that reflects the infection rate and trend of the general population. Our findings call for the early integration of academic institutions in pandemic preparedness, with capabilities to rapidly deploy highly skilled staff, as well as develop, test, and accommodate efficient low-cost pipelines.
RESUMEN
Introduction: Understanding the interplay of immune mediators in relation to clinical outcomes during acute infection has the potential to highlight immune networks critical to symptom recovery. The objective of the present study was to elucidate the immune networks critical to early symptom resolution following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Methods: In a community-based randomised clinical trial comparing inhaled budesonide against usual care in 139 participants with early onset SARS-CoV-2 (the STOIC study; clinicaltrials.gov identifier NCT04416399), significant clinical deterioration (reported need for urgent care, emergency department visit, hospitalisation: the primary outcome), self-reported symptom severity (Influenza Patient-Reported Outcome questionnaire) and immune mediator networks were assessed. Immune mediator networks were determined using pre-defined mathematical modelling of immune mediators, determined by the Meso Scale Discovery U-Plex platform, within the first 7â days of SARS-CoV-2 infection compared to 22 healthy controls. Results: Interferon- and chemokine-dominant networks were associated with high viral burden. Elevated levels of the mucosal network (chemokine (C-C motif) ligand (CCL)13, CCL17, interleukin (IL)-33, IL-5, IL-4, CCL26, IL-2, IL-12 and granulocyte-macrophage colony-stimulating factor) was associated with a mean 3.7-day quicker recovery time, with no primary outcome events, irrespective of treatment arm. This mucosal network was associated with initial nasal and throat symptoms at day 0. Conclusion: A nasal immune network is critical to accelerated recovery and improved patient outcomes in community-acquired viral infections. Overall, early prognostication and treatments aimed at inducing epithelial responses may prove clinically beneficial in enhancing early host response to virus.
RESUMEN
Introduction: Asthma is the most common chronic inflammatory disease of the airways. The airway epithelium is a key driver of the disease, and numerous studies have established genome-wide differences in mRNA expression between health and asthma. However, the underlying molecular mechanisms for such differences remain poorly understood. The human TTP family is comprised of ZFP36, ZFP36L1 and ZFP36L2, and has essential roles in immune regulation by determining the stability and translation of myriad mRNAs encoding for inflammatory mediators. We investigated the expression and possible role of the tristetraprolin (TTP) family of RNA binding proteins (RBPs), poorly understood in asthma. Methods: We analysed the levels of ZFP36, ZFP36L1 and ZFP36L2 mRNA in several publicly available asthma datasets, including single cell RNA-sequencing. We also interrogated the expression of known targets of these RBPs in asthma. We assessed the lung mRNA expression and cellular localization of Zfp36l1 and Zfp36l2 in precision cut lung slices in murine asthma models. Finally, we determined the expression in airway epithelium of ZFP36L1 and ZFP36L2 in human bronchial biopsies and performed rescue experiments in primary bronchial epithelium from patients with severe asthma. Results: We found ZFP36L1 and ZFP36L2 mRNA levels significantly downregulated in the airway epithelium of patients with very severe asthma in different cohorts (5 healthy vs. 8 severe asthma; 36 moderate asthma vs. 37 severe asthma on inhaled steroids vs. 26 severe asthma on oral corticoids). Integrating several datasets allowed us to infer that mRNAs potentially targeted by these RBPs are increased in severe asthma. Zfp36l1 was downregulated in the lung of a mouse model of asthma, and immunostaining of ex vivo lung slices with a dual antibody demonstrated that Zfp36l1/l2 nuclear localization was increased in the airway epithelium of an acute asthma mouse model, which was further enhanced in a chronic model. Immunostaining of human bronchial biopsies showed that airway epithelial cell staining of ZFP36L1 was decreased in severe asthma as compared with mild, while ZFP36L2 was upregulated. Restoring the levels of ZFP36L1 and ZFP36L2 in primary bronchial epithelial cells from patients with severe asthma decreased the mRNA expression of IL6, IL8 and CSF2. Discussion: We propose that the dysregulation of ZFP36L1/L2 levels as well as their subcellular mislocalization contributes to changes in mRNA expression and cytoplasmic fate in asthma.
RESUMEN
Most functional eukaryotic mRNAs contain a 5' 7-methylguanosine (m7G) cap. Although capping is essential for many biological processes including mRNA processing, export and translation, the fate of uncapped transcripts has not been studied extensively. Here, we employed fast nuclear depletion of the capping enzymes in Saccharomyces cerevisiae to uncover the turnover of the transcripts that failed to be capped. We show that although the degradation of cap-deficient mRNA is dominant, the levels of hundreds of non-capped mRNAs increase upon depletion of the capping enzymes. Overall, the abundance of non-capped mRNAs is inversely correlated to the expression levels, altogether resembling the effects observed in cells lacking the cytoplasmic 5'-3' exonuclease Xrn1 and indicating differential degradation fates of non-capped mRNAs. The inactivation of the nuclear 5'-3' exonuclease Rat1 does not rescue the non-capped mRNA levels indicating that Rat1 is not involved in their degradation and consequently, the lack of the capping does not affect the distribution of RNA Polymerase II on the chromatin. Our data indicate that the cap presence is essential to initiate the Xrn1-dependent degradation of mRNAs underpinning the role of 5' cap in the Xrn1-dependent buffering of the cellular mRNA levels.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Exonucleasas/metabolismo , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Background: Many patients have uncontrolled asthma despite available treatments. Most of the new asthma therapies have focused on type 2 (T2) inflammation, leaving an unmet need for innovative research into mechanisms of asthma beyond T2 and immunity. An international group of investigators developed the International Collaborative Asthma Network (ICAN) with the goal of sharing innovative research on disease mechanisms, developing new technologies and therapies, organising pilot studies and engaging early-stage career investigators from across the world. This report describes the purpose, development and outcomes of the first ICAN forum. Methods: Abstracts were solicited from interdisciplinary early-stage career investigators with innovative ideas beyond T2 inflammation for asthma and were selected for presentation at the forum. Breakout sessions were conducted to discuss innovation, collaboration and research translation. Results: The abstracts were categorised into: 1) general omics and big data analysis; 2) lung-brain axis and airway neurology; 3) sex differences; 4) paediatric asthma; 5) new therapeutic targets inspired by airway epithelial biology; 6) new therapeutics targeting airway and circulating immune mediators; and 7) lung anatomy, physiology and imaging. Discussions revealed that research groups are looking for opportunities to further their findings using larger scale collaboration and the ability to translate their in vitro findings into clinical treatment. Conclusions: Through ICAN, teams that included interdisciplinary early-stage career investigators discussed innovation, collaboration and translation in asthma and severe asthma research. With a combination of fresh ideas and energetic, collaborative, global participation, ICAN has laid a firm foundation and model for future collaborative global asthma research.
RESUMEN
Substandard and falsified (SF) medicines are a global health challenge with the World Health Organization (WHO) estimating that 1 in 10 of medicines in low- and middle-income countries (LMICs) are SF. Antimicrobials (i.e. antimalarials, antibiotics) are the most commonly reported SF medicines. SF medicines contribute significantly to the global burden of infectious diseases and antimicrobial resistance (AMR). This article discusses the challenges associated with the global impact of SF and unregistered/unlicensed antimicrobials with a focus on anti-TB medicines. Tuberculosis (TB) is the 13th leading cause of death worldwide, and is currently the second leading cause of death from a single infectious agent, ranking after COVID-19 and above HIV/AIDS. Specifically in the case of TB, poor quality of anti-TB medicines is among the drivers of the emergence of drug-resistant TB pathogens. In this article, we highlight and discuss challenges including the emergence of SF associated AMR, patient mistrust and lack of relevant data. We also present study reports to inform meaningful change. Recommended solutions involve the adaptation of interventions from high-income countries (HICs) to LMICS, the need for improvement in the uptake of medication authentication tools in LMICs, increased stewardship, and the need for global and regional multidisciplinary legal and policy cooperation, resulting in improved legal sanctions.
RESUMEN
Sepsis is a common illness. Immune responses are considered major drivers of sepsis illness and outcomes. However, there are no proven immunomodulator therapies in sepsis. We hypothesised that in-depth characterisation of sepsis-specific immune trajectory may inform immunomodulation in sepsis-related critical illness. We describe the protocol of the IMMERSE study to address this hypothesis. We include critically ill sepsis patients without documented immune comorbidity and age-sex matched cardiac surgical patients as controls. We plan to perform an in-depth biological characterisation of innate and adaptive immune systems, platelet function, humoral components and transcriptional determinants of the immune system responses in sepsis. This will be done at pre-specified time points during their critical illness to generate an illness trajectory. The sample size for each biological assessment is different and is described in detail. In summary, the overall aim of the IMMERSE study is to increase the granularity of longitudinal immunology model of sepsis to inform future immunomodulation trials.
RESUMEN
The COVID-19 pandemic has accelerated the need to identify new antiviral therapeutics at pace, including through drug repurposing. We employed a Quadratic Unbounded Binary Optimization (QUBO) model, to search for compounds similar to Remdesivir, the first antiviral against SARS-CoV-2 approved for human use, using a quantum-inspired device. We modelled Remdesivir and compounds present in the DrugBank database as graphs, established the optimal parameters in our algorithm and resolved the Maximum Weighted Independent Set problem within the conflict graph generated. We also employed a traditional Tanimoto fingerprint model. The two methods yielded different lists of lead compounds, with some overlap. While GS-6620 was the top compound predicted by both models, the QUBO model predicted BMS-986094 as second best. The Tanimoto model predicted different forms of cobalamin, also known as vitamin B12. We then determined the half maximal inhibitory concentration (IC50) values in cell culture models of SARS-CoV-2 infection and assessed cytotoxicity. We also demonstrated efficacy against several variants including SARS-CoV-2 Strain England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). Lastly, we employed an in vitro polymerization assay to demonstrate that these compounds directly inhibit the RNA-dependent RNA polymerase (RdRP) of SARS-CoV-2. Together, our data reveal that our QUBO model performs accurate comparisons (BMS-986094) that differed from those predicted by Tanimoto (different forms of vitamin B12); all compounds inhibited replication of SARS-CoV-2 via direct action on RdRP, with both models being useful. While Tanimoto may be employed when performing relatively small comparisons, QUBO is also accurate and may be well suited for very complex problems where computational resources may limit the number and/or complexity of possible combinations to evaluate. Our quantum-inspired screening method can therefore be employed in future searches for novel pharmacologic inhibitors, thus providing an approach for accelerating drug deployment.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/química , Antivirales/farmacología , Reposicionamiento de Medicamentos , Humanos , Pandemias , ARN Polimerasa Dependiente del ARN , Vitamina B 12RESUMEN
The gold standard protocol for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection detection remains reverse transcription quantitative polymerase chain reaction (qRT-PCR), which detects viral RNA more sensitively than any other approach. Here, we present Homebrew, a low-cost protocol to extract RNA using widely available reagents. Homebrew is as sensitive as commercially available RNA extraction kits. Homebrew allows for sample pooling and can be adapted for automation in high-throughput settings. For complete details on the use and execution of this protocol, please refer to Page et al. (2022).
Asunto(s)
COVID-19 , Ácidos Nucleicos , Automatización , COVID-19/diagnóstico , Humanos , ARN Viral/genética , SARS-CoV-2/genéticaRESUMEN
Management of COVID-19 and other epidemics requires large-scale diagnostic testing. The gold standard for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains reverse transcription quantitative PCR (qRT-PCR) analysis, which detects viral RNA more sensitively than any other method. However, the resource use and supply-chain requirements of RT-PCR have continued to challenge diagnostic laboratories worldwide. Here, we establish and characterize a low-cost method to detect SARS-CoV-2 in clinical combined nose and throat swabs, allowing for automation in high-throughput settings. This method inactivates virus material with sodium dodecylsulfate (SDS) and uses silicon dioxide as the RNA-binding matrix in combination with sodium chloride (NaCl) and isopropanol. With similar sensitivity for SARS-CoV-2 viral targets but a fraction of time and reagent expenditure compared with commercial kits, our method also enables sample pooling without loss of sensitivity. We suggest that this method will facilitate more economical widespread testing, particularly in resource-limited settings.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Transcripción ReversaRESUMEN
MicroRNAs (miRs) are known to regulate pro-inflammatory effector functions of myeloid cells, and miR dysregulation is implicated in rheumatoid arthritis (RA), a condition characterized by inflammation and destruction of the joints. We showed previously that miR-155 is increased in myeloid cells in RA and induces pro-inflammatory activation of monocytes and macrophages; however, its role at the interface between innate and adaptive immunity was not defined. Here, RNA-sequencing revealed that overexpression of miR-155 in healthy donor monocytes conferred a specific gene profile which bears similarities to that of RA synovial fluid-derived CD14+ cells and HLAhighISG15+ synovial tissue macrophages, both of which are characterized by antigen-presenting pathways. In line with this, monocytes in which miR-155 was overexpressed, displayed increased expression of HLA-DR and both co-stimulatory and co-inhibitory molecules, and induced activation of polyfunctional T cells. Together, these data underpin the notion that miR-155-driven myeloid cell activation in the synovium contributes not only to inflammation but may also influence the adaptive immune response.
Asunto(s)
Artritis Reumatoide , MicroARNs , Linfocitos T CD4-Positivos/metabolismo , Humanos , Macrófagos , MicroARNs/genética , Monocitos , Membrana SinovialRESUMEN
There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP. RNA extraction methods provided similar results, with Beckman performing better with our primer-probe combinations. Luna proved most sensitive although overall the three reagents did not show significant differences. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrated that heat treatment of nasopharyngeal swabs at 70°C for 10 or 30 min, or 90°C for 10 or 30 min (both original variant and B 1.1.7) inactivated SARS-CoV-2 employing plaque assays, and had minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable in settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/.
Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , Calor , ARN Viral/genética , SARS-CoV-2/genética , Inactivación de Virus , COVID-19/epidemiología , COVID-19/virología , Epidemias/prevención & control , Humanos , Nasofaringe/virología , Juego de Reactivos para Diagnóstico , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , SARS-CoV-2/fisiología , Sensibilidad y Especificidad , Manejo de Especímenes/métodos , Flujo de TrabajoRESUMEN
The COVID-19 pandemic has accelerated the need to identify new therapeutics at pace, including through drug repurposing. We employed a Quadratic Unbounded Binary Optimization (QUBO) model, to search for compounds similar to Remdesivir (RDV), the only antiviral against SARS-CoV-2 currently approved for human use, using a quantum-inspired device. We modelled RDV and compounds present in the DrugBank database as graphs, established the optimal parameters in our algorithm and resolved the Maximum Weighted Independent Set problem within the conflict graph generated. We also employed a traditional Tanimoto fingerprint model. The two methods yielded different lists of compounds, with some overlap. While GS-6620 was the top compound predicted by both models, the QUBO model predicted BMS-986094 as second best. The Tanimoto model predicted different forms of cobalamin, also known as vitamin B12. We then determined the half maximal inhibitory concentration (IC 50 ) values in cell culture models of SARS-CoV-2 infection and assessed cytotoxicity. Lastly, we demonstrated efficacy against several variants including SARS-CoV-2 Strain England 2 (England 02/2020/407073), B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). Our data reveal that BMS-986094 and different forms of vitamin B12 are effective at inhibiting replication of all these variants of SARS-CoV-2. While BMS-986094 can cause secondary effects in humans as established by phase II trials, these findings suggest that vitamin B12 deserves consideration as a SARS-CoV-2 antiviral, particularly given its extended use and lack of toxicity in humans, and its availability and affordability. Our screening method can be employed in future searches for novel pharmacologic inhibitors, thus providing an approach for accelerating drug deployment.
RESUMEN
There is a worldwide need for reagents to perform SARS-CoV-2 detection. Some laboratories have implemented kit-free protocols, but many others do not have the capacity to develop these and/or perform manual processing. We provide multiple workflows for SARS-CoV-2 nucleic acid detection in clinical samples by comparing several commercially available RNA extraction methods: QIAamp Viral RNA Mini Kit (QIAgen), RNAdvance Blood/Viral (Beckman) and Mag-Bind Viral DNA/RNA 96 Kit (Omega Bio-tek). We also compared One-step RT-qPCR reagents: TaqMan Fast Virus 1-Step Master Mix (FastVirus, ThermoFisher Scientific), qPCRBIO Probe 1-Step Go Lo-ROX (PCR Biosystems) and Luna ® Universal Probe One-Step RT-qPCR Kit (Luna, NEB). We used primer-probes that detect viral N (EUA CDC) and RdRP (PHE guidelines). All RNA extraction methods provided similar results. FastVirus and Luna proved most sensitive. N detection was more reliable than that of RdRP, particularly in samples with low viral titres. Importantly, we demonstrate that treatment of nasopharyngeal swabs with 70 degrees for 10 or 30 min, or 90 degrees for 10 or 30 min (both original variant and B 1.1.7) inactivates SARS-CoV-2 employing plaque assays, and that it has minimal impact on the sensitivity of the qPCR in clinical samples. These findings make SARS-CoV-2 testing portable to settings that do not have CL-3 facilities. In summary, we provide several testing pipelines that can be easily implemented in other laboratories and have made all our protocols and SOPs freely available at https://osf.io/uebvj/ .
RESUMEN
Antibody responses to SARS-CoV-2 can be detected in most infected individuals 10-15 d after the onset of COVID-19 symptoms. However, due to the recent emergence of SARS-CoV-2 in the human population, it is not known how long antibody responses will be maintained or whether they will provide protection from reinfection. Using sequential serum samples collected up to 94 d post onset of symptoms (POS) from 65 individuals with real-time quantitative PCR-confirmed SARS-CoV-2 infection, we show seroconversion (immunoglobulin (Ig)M, IgA, IgG) in >95% of cases and neutralizing antibody responses when sampled beyond 8 d POS. We show that the kinetics of the neutralizing antibody response is typical of an acute viral infection, with declining neutralizing antibody titres observed after an initial peak, and that the magnitude of this peak is dependent on disease severity. Although some individuals with high peak infective dose (ID50 > 10,000) maintained neutralizing antibody titres >1,000 at >60 d POS, some with lower peak ID50 had neutralizing antibody titres approaching baseline within the follow-up period. A similar decline in neutralizing antibody titres was observed in a cohort of 31 seropositive healthcare workers. The present study has important implications when considering widespread serological testing and antibody protection against reinfection with SARS-CoV-2, and may suggest that vaccine boosters are required to provide long-lasting protection.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/patología , Femenino , Humanos , Cinética , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Seroconversión , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
There is a clear requirement for an accurate SARS-CoV-2 antibody test, both as a complement to existing diagnostic capabilities and for determining community seroprevalence. We therefore evaluated the performance of a variety of antibody testing technologies and their potential use as diagnostic tools. Highly specific in-house ELISAs were developed for the detection of anti-spike (S), -receptor binding domain (RBD) and -nucleocapsid (N) antibodies and used for the cross-comparison of ten commercial serological assays-a chemiluminescence-based platform, two ELISAs and seven colloidal gold lateral flow immunoassays (LFIAs)-on an identical panel of 110 SARS-CoV-2-positive samples and 50 pre-pandemic negatives. There was a wide variation in the performance of the different platforms, with specificity ranging from 82% to 100%, and overall sensitivity from 60.9% to 87.3%. However, the head-to-head comparison of multiple sero-diagnostic assays on identical sample sets revealed that performance is highly dependent on the time of sampling, with sensitivities of over 95% seen in several tests when assessing samples from more than 20 days post onset of symptoms. Furthermore, these analyses identified clear outlying samples that were negative in all tests, but were later shown to be from individuals with mildest disease presentation. Rigorous comparison of antibody testing platforms will inform the deployment of point-of-care technologies in healthcare settings and their use in the monitoring of SARS-CoV-2 infections.
Asunto(s)
Anticuerpos Antivirales/análisis , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Sistemas de Atención de Punto , Pruebas Serológicas/métodos , Adulto , Anciano , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Servicios de Salud Comunitaria , Proteínas de la Nucleocápside de Coronavirus , Ensayo de Inmunoadsorción Enzimática , Femenino , Hospitales , Humanos , Inmunoensayo , Mediciones Luminiscentes , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunologíaRESUMEN
An evaluation of a rapid portable gold-nanotechnology measuring SARS-CoV-2 IgM, IgA and IgG antibody concentrations against spike 1 (S1), spike 2 (S) and nucleocapsid (N) was conducted using serum samples from 74 patients tested for SARS-CoV-2 RNA on admission to hospital, and 47 historical control patients from March 2019. 59 patients were RNA(+) and 15 were RNA(-). A serum (±) classification was derived for all three antigens and a quantitative serological profile was obtained. Serum(+) was identified in 30% (95% CI 11-48) of initially RNA(-) patients, in 36% (95% CI 17-54) of RNA(+) patients before 10 days, 77% (95% CI 67-87) between 10 and 20 days and 95% (95% CI 86-100) after 21 days. The patient-level diagnostic accuracy relative to RNA(±) after 10 days displayed 88% sensitivity (95% CI 75-95) and 75% specificity (95% CI 22-99), although specificity compared with historical controls was 100% (95%CI 91-100). This study provides robust support for further evaluation and validation of this novel technology in a clinical setting and highlights challenges inherent in assessment of serological tests for an emerging disease such as COVID-19.
Asunto(s)
Anticuerpos Antivirales/análisis , Betacoronavirus/inmunología , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Pruebas Serológicas/métodos , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/inmunología , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Estudios de Cohortes , Infecciones por Coronavirus/sangre , Proteínas de la Nucleocápside de Coronavirus , Reacciones Falso Negativas , Femenino , Oro/química , Humanos , Inmunoglobulina A/análisis , Inmunoglobulina A/inmunología , Inmunoglobulina G/análisis , Inmunoglobulina G/inmunología , Inmunoglobulina M/análisis , Inmunoglobulina M/inmunología , Masculino , Nanopartículas del Metal/química , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , Pandemias , Fosfoproteínas , Neumonía Viral/sangre , SARS-CoV-2 , Sensibilidad y Especificidad , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto JovenRESUMEN
Alzheimer's disease (AD) is characterised by Aß and tau pathology as well as synaptic degeneration, which correlates best with cognitive impairment. Previous work suggested that this pathological complexity may result from changes in mRNA translation. Here, we studied whether mRNA translation and its underlying signalling are altered in an early model of AD, and whether modelling this deficiency in mice causes pathological features with ageing. Using an unbiased screen, we show that exposure of primary neurons to nanomolar amounts of Aß increases FMRP-regulated protein synthesis. This selective regulation of mRNA translation is dependent on a signalling cascade involving MAPK-interacting kinase 1 (Mnk1) and the eukaryotic initiation factor 4E (eIF4E), and ultimately results in reduction of CYFIP2, an FMRP-binding protein. Modelling this CYFIP2 reduction in mice, we find age-dependent Aß accumulation in the thalamus, development of tau pathology in entorhinal cortex and hippocampus, as well as gliosis and synapse loss in the hippocampus, together with deficits in memory formation. Therefore, we conclude that early stages of AD involve increased translation of specific CYFIP2/FMRP-regulated transcripts. Since reducing endogenous CYFIP2 expression is sufficient to cause key features of AD with ageing in mice, we suggest that prolonged activation of this pathway is a primary step toward AD pathology, highlighting a novel direction for therapeutic targeting.
Asunto(s)
Enfermedad de Alzheimer , Proteínas Adaptadoras Transductoras de Señales , Envejecimiento , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Biosíntesis de Proteínas , Sinapsis/metabolismo , Proteínas tau/metabolismoRESUMEN
BACKGROUND AND AIMS: Mucosal healing is important in Crohn's disease therapies. Epithelial homeostasis becomes dysregulated in Crohn's, with increased permeability, inflammation, and diarrhoea. MicroRNAs are small non-coding RNAs that regulate gene expression and show changes in inflammatory bowel disease. Tumour necrosis factor alpha [TNFα] inhibitor protein 3 is raised in Crohn's and regulates TNFα-mediated activation of NFκB. We investigated TNFα regulation by microRNA in Crohn's disease [CD], and studied effects on epithelial permeability and inflammation. METHODS: Colonic epithelium from CD and healthy donor biopsies was isolated using laser capture microdissection, and microRNA was quantified. Tumour necrosis factor alpha inhibitor protein 3 was characterised immunohistochemically on serial sections. Expression effect of microRNA was confirmed with luciferase reporter assays. Functional barrier permeability studies and innate cytokine release were investigated with cell and explant culture studies. RESULTS: MicroRNA23a levels significantly increased in colonic Crohn's epithelium compared with healthy epithelium. Luciferase reporter assays in transfected epithelial cells confirmed that microRNA23a repressed expression via the 3' untranslated region of tumour necrosis factor alpha inhibitor protein 3 mRNA, coinciding with increased NFκB-mediated transcription. Immunohistochemical staining of TNFAIP3 protein in colonic biopsies was reduced or absent in adjacent Crohn's sections, correlating inversely with microRNA23a levels and encompassing some intercohort variation. Overexpression of microRNA23a increased epithelial barrier permeability in a colonic epithelial model and increased inflammatory cytokine release in cultured explant biopsies, mimicking Crohn's disease characteristics. CONCLUSIONS: MicroRNA23a overexpression in colonic Crohn's epithelium represses tumour necrosis factor alpha inhibitor protein 3, enhancing sensitivity to TNFα, with increased intestinal permeability and cytokine release.