RESUMEN
Organic anions (OA) are compounds including drugs or toxicants that are negatively charged at physiological pH and are typically transported by Organic Anion Transporters (OATs). Human OAT4 (SLC22A11) is expressed in the apical membrane of renal proximal tubules. Although there is no rodent ortholog of hOAT4, rodents express Oat5 (Slc22a19), an anion exchanger that is also localized to the apical membrane of renal proximal tubule cells. The purpose of this study was to determine the functional similarity between mouse Oat5 and human OAT4. Chinese hamster ovary (CHO) cells expressing SLC22A11 or Slc22a19 were used to assess the transport characteristics of radiolabeled ochratoxin (OTA). We determined the kinetics of OTA transport; the resulting Kt and Jmax values were very similar for both hOAT4 and mOat5: Kt 3.9 and 7.2 µM, respectively, & Jmax 4.4 and 3.9 pmol/cm2, respectively. For the profile of OTA inhibition by OAs, IC50 values were determined for several clinically important drugs and toxicants. The resulting IC50 values ranged from 9 µM for indomethacin to ~600 µM for the diuretic hydrochlorothiazide. We measured the efflux of OTA from preloaded cells; both hOAT4 and mOat5 supported the efflux of OTA. These data support the hypothesis that OAT4 and Oat5 are functional orthologs and share selectivity for OTA both for reabsorption and secretion. Significance Statement This study compares the selectivity profile between human OAT4 and mouse Oat5. Our data revealed a similar selectivity profile for OTA reabsorption and secretion by these two transporters, thereby supporting the hypothesis that hOAT4 and mOat5, while not genetic orthologs, behave as functional orthologs for both uptake and efflux. These data will be instrumental in selecting an appropriate animal model when studying the renal disposition of anionic drugs and toxicants.
RESUMEN
Multidrug and toxin extruder (MATE) 1 plays a central role in mediating renal secretion of organic cations, a structurally diverse collection of compounds that includes â¼40% of prescribed drugs. Because inhibition of transport activity of other multidrug transporters, including the organic cation transporter (OCT) 2, is influenced by the structure of the transported substrate, the present study screened over 400 drugs as inhibitors of the MATE1-mediated transport of four structurally distinct organic cation substrates: the commonly used drugs: 1) metformin and 2) cimetidine; and two prototypic cationic substrates, 3) 1-methyl-4-phenylpyridinium (MPP), and 4) the novel fluorescent probe, N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium iodide. Transport was measured in Chinese hamster ovary cells that stably expressed the human ortholog of MATE1. Comparison of the resulting inhibition profiles revealed no systematic influence of substrate structure on inhibitory efficacy. Similarly, IC50 values for 26 structurally diverse compounds revealed no significant influence of substrate structure on the kinetic interaction of inhibitor with MATE1. The IC50 data were used to generate three-dimensional quantitative pharmacophores that identified hydrophobic regions, H-bond acceptor sites, and an ionizable (cationic) feature as key determinants for ligand binding to MATE1. In summary, in contrast to the behavior observed with some other multidrug transporters, including OCT2, the results suggest that substrate identity exerts comparatively little influence on ligand interaction with MATE1.
Asunto(s)
Proteínas de Transporte de Catión Orgánico/metabolismo , Animales , Teorema de Bayes , Transporte Biológico , Células CHO , Cricetinae , Cricetulus , Humanos , Concentración 50 Inhibidora , Cinética , Ligandos , Aprendizaje Automático , Modelos Moleculares , Especificidad por Sustrato , Factores de TiempoRESUMEN
PURPOSE: Unstirred water layers (UWLs) present an unavoidable complication to the measurement of transport kinetics in cultured cells, and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. METHODS: Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. RESULTS: Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 µm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. CONCLUSIONS: Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the apparent affinity of multidrug transporters for substrates.
Asunto(s)
Proteínas de Transporte de Catión Orgánico/metabolismo , Agua/metabolismo , 1-Metil-4-fenilpiridinio/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Línea Celular , Cricetulus , Cinética , Tetraetilamonio/metabolismoRESUMEN
The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: N-butylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 µM) than for either the pyrrolidinium- (BmPy; 20-70 µM) or imidazolium-based ILs (Bmim; 15-60 µM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 µM against MPP and 30 µM against NBD-MTMA versus 60 µM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.
Asunto(s)
Líquidos Iónicos/farmacología , Proteínas de Transporte de Catión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , 1-Metil-4-fenilpiridinio/farmacología , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/farmacología , Algoritmos , Animales , Unión Competitiva/efectos de los fármacos , Transporte Biológico Activo/efectos de los fármacos , Células CHO , Cationes/farmacología , Cricetinae , Cricetulus , Humanos , Cinética , Compuestos de Piridinio/farmacología , Compuestos de Amonio Cuaternario/farmacologíaRESUMEN
Ionic liquids (ILs) are a class of salts that are expected to be used as a new source of solvents and for many other applications. Our previous studies revealed that selected ILs, structurally related organic cations, are eliminated exclusively in urine as the parent compound, partially mediated by renal transporters. This study investigated the inhibitory effects of N-butylpyridinium chloride (NBuPy-Cl) and structurally related ILs on organic cation transporters (OCTs) and multidrug and toxic extrusion transporters (MATEs) in vitro and in vivo. After Chinese hamster ovary cells expressing rat (r) OCT1, rOCT2, human (h) OCT2, hMATE1, or hMATE2-K were constructed, the ability of NBuPy-Cl, 1-methyl-3-butylimidazolium chloride (Bmim-Cl), N-butyl-N-methylpyrrolidinium chloride (BmPy-Cl), and alkyl substituted pyridinium ILs to inhibit these transporters was determined in vitro. NBuPy-Cl (0, 0.5, or 2 mg/kg per hour) was also infused into rats to assess its effect on the pharmacokinetics of metformin, a substrate of OCTs and MATEs. NBuPy-Cl, Bmim-Cl, and BmPy-Cl displayed strong inhibitory effects on these transporters (IC(50) = 0.2-8.5 µM). In addition, the inhibitory effects of alkyl-substituted pyridinium ILs on OCTs increased dramatically as the length of the alkyl chain increased. The IC(50) values were 0.1, 3.8, 14, and 671 µM (hexyl-, butyl-, and ethyl-pyridinium and pyridinium chloride) for rOCT2-mediated metformin transport. Similar structurally related inhibitory kinetics were also observed for rOCT1 and hOCT2. The in vivo coadministration study revealed that NBuPy-Cl reduced the renal clearance of metformin in rats. These results demonstrate that ILs compete with other substrates of OCTs and MATEs and could alter the in vivo pharmacokinetics of such substrates.