Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Med ; 118: 103207, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38215607

RESUMEN

PURPOSE: To retrospectively assess the differences between planned and delivered dose during ultra-hypofractionated (UHF) prostate cancer treatments, by evaluating the dosimetric impact of daily anatomical variations alone, and in combination with prostate intrafraction motion. METHODS: Prostate intrafraction motion was recorded with a transperineal ultrasound probe in 15 patients treated by UHF radiotherapy (36.25 Gy/5 fractions). The dosimetric objective was to cover 99 % of the clinical target volume with the 100 % prescription isodose line. After treatment, planning CT (pCT) images were deformably registered onto daily Cone Beam CT to generate pseudo-CT for dose accumulation (accumulated CT, aCT). The interplay effect was accounted by synchronizing prostatic shifts and beam geometry. Finally, the shifted dose maps were accumulated (moved-accumulated CT, maCT). RESULTS: No significant change in daily CTV volumes was observed. Conversely, CTV V100% was 98.2 ± 0.8 % and 94.7 ± 2.6 % on aCT and maCT, respectively, compared with 99.5 ± 0.2 % on pCT (p < 0.0001). Bladder volume was smaller than planned in 76 % of fractions and D5cc was 33.8 ± 3.2 Gy and 34.4 ± 3.4 Gy on aCT (p = 0.02) and maCT (p = 0.01) compared with the pCT (36.0 ± 1.1 Gy). The rectum was smaller than planned in 50.3 % of fractions, but the dosimetric differences were not statistically significant, except for D1cc, found smaller on the maCT (33.2 ± 3.2 Gy, p = 0.02) compared with the pCT (35.3 ± 0.7 Gy). CONCLUSIONS: Anatomical variations and prostate movements had more important dosimetric impact than anatomical variations alone, although, in some cases, the two phenomena compensated. Therefore, an efficient IGRT protocol is required for treatment implementation to reduce setup errors and control intrafraction motion.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Masculino , Humanos , Próstata , Estudios Retrospectivos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Radioterapia de Intensidad Modulada/métodos
2.
Phys Med ; 96: 114-120, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35278928

RESUMEN

PURPOSE: To investigate the impact on dose distribution of intrafraction motion during moderate hypofractionated prostate cancer treatments and to estimate minimum non-isotropic and asymmetric (NI-AS) treatment margins taking motion into account. METHODS: Prostate intrafraction 3D displacements were recorded with a transperineal ultrasound probe and were evaluated in 46 prostate cancer patients (876 fractions) treated by moderate hypofractionated radiation therapy (60 Gy in 20 fractions). For 18 patients (346 fractions), treatment plans were recomputed increasing CTV-to-PTV margins from 0 to 6 mm with an auto-planning optimization algorithm. Dose distribution was estimated using the voxel shifting method by displacing CTV structure according to the retrieved movements. Time-dependent margins were finally calculated using both van Herk's formula and the voxel shifting method. RESULTS: Mean intrafraction prostate displacements observed were -0.02 ± 0.52 mm, 0.27 ± 0.78 mm and -0.43 ± 1.06 mm in left-right, supero-inferior and antero-posterior directions, respectively. The CTV dosimetric coverage increased with increased CTV-to-PTV margins but it decreased with time. Hence using van Herk's formula, after 7 min of treatment, a margin of 0.4 and 0.5 mm was needed in left and right, 1.5 and 0.7 mm in inferior and superior and 1.1 and 3.2 mm in anterior and posterior directions, respectively. Conversely, using the voxel shifting method, a margin of 0 mm was needed in left-right, 2 mm in superior, 3 mm in inferior and anterior and 5 mm in posterior directions, respectively. With this latter NI-AS margin strategy, the dosimetric target coverage was equivalent to the one obtained with a 5 mm homogeneous margin. CONCLUSIONS: NI-AS margins would be required to optimally take into account intrafraction motion.


Asunto(s)
Neoplasias de la Próstata , Radioterapia de Intensidad Modulada , Humanos , Masculino , Movimiento , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Hipofraccionamiento de la Dosis de Radiación , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA