Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Pharmacol ; 98(5): 599-611, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943494

RESUMEN

C-C chemokine receptor 5 (CCR5) is a chemokine receptor belonging to the G protein-coupled receptor (GPCR) superfamily. An established anti-human immunodeficiency virus drug target, CCR5 is attracting significant additional interest in both cancer and neuroinflammation. Several N-terminally engineered analogs of C-C chemokine ligand 5 (CCL5), a natural ligand of CCR5, are highly potent CCR5 inhibitors. The inhibitory mechanisms of certain analogs relate to modulation of receptor desensitization, but the cellular and molecular mechanisms have not been fully elucidated. Here we made use of a collection of CCR5 phosphorylation mutants and arrestin variants to investigate how CCL5 analogs differ from CCL5 in their capacity to elicit both CCR5 phosphorylation and arrestin recruitment, with reference to the current "core" and "tail" interaction model for arrestin-GPCR interaction. We showed that CCL5 recruits both arrestin 2 and arrestin 3 to CCR5 with recruitment, particularly of arrestin 2, strongly dependent on the arrestin tail interaction. 5P12-RANTES does not elicit receptor phosphorylation or arrestin recruitment. In contrast, PSC-RANTES induces CCR5 hyperphosphorylation, driving enhanced arrestin recruitment with lower dependence on the arrestin tail interaction. 5P14-RANTES induces comparable levels of receptor phosphorylation to CCL5, but arrestin recruitment is absolutely dependent on the arrestin tail interaction, and in one of the cellular backgrounds used, recruitment showed isoform bias toward arrestin 3 versus arrestin 2. No evidence for ligand-specific differences in receptor phosphorylation patterns across the four implicated serine residues was observed. Our results improve understanding of the molecular pharmacology of CCR5 and help further elucidate the inhibitory mechanisms of a group of potent inhibitors. SIGNIFICANCE STATEMENT: C-C chemokine receptor 5 (CCR5) is a key drug target for human immunodeficiency virus, cancer, and inflammation. Highly potent chemokine analog inhibitors act via the modulation of receptor desensitization, a process initiated by the recruitment of arrestin proteins. This study shows that potent C-C chemokine ligand 5 analogs differ from each other and from the parent chemokine in the extent and quality of CCR5-arrestin association that they elicit, providing valuable insights into CCR5 pharmacology and cell biology that will facilitate the development of new medicines targeting this important receptor.


Asunto(s)
Arrestina/metabolismo , Quimiocina CCL5/metabolismo , Quimiocinas CC/metabolismo , Fosforilación/fisiología , Isoformas de Proteínas/metabolismo , Animales , Arrestinas/metabolismo , Células CHO , Línea Celular , Quimiocinas/metabolismo , Cricetulus , Células HEK293 , Humanos , Ligandos , Receptores de Quimiocina/metabolismo , Transducción de Señal/fisiología , beta-Arrestina 1/metabolismo
2.
J Biol Chem ; 293(49): 19092-19100, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30305389

RESUMEN

Peptides represent a promising source of new medicines, but improved technologies are needed to facilitate discovery and optimization campaigns. In particular, longer peptides with multiple disulfide bridges are challenging to produce, and producing large numbers of structurally related variants is dissuasively costly and time-consuming. The principal cost and time drivers are the multiple column chromatography purification steps that are used during the multistep chemical synthesis procedure, which involves both ligation and oxidative refolding steps. In this study, we developed a method for multiplex parallel synthesis of complex peptide analogs in which the structurally variant region of the molecule is produced as a small peptide on a 384-well synthesizer with subsequent ligation to the longer, structurally invariant region and oxidative refolding carried out in-well without any column purification steps. To test the method, we used a panel of 96 analogs of the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 (69 residues, two disulfide bridges), which had been synthesized using standard approaches and characterized pharmacologically in an earlier study. Although, as expected, the multiplex method generated chemokine analogs of lower purity than those produced in the original study, it was nonetheless possible to closely match the pharmacological attributes (anti-HIV potency, capacity to elicit G protein signaling, and capacity to elicit intracellular receptor sequestration) of each chemokine analog to reference data from the earlier study. This rapid, low-cost approach has the potential to support discovery and optimization campaigns based on analogs of other chemokines as well as those of other complex peptide and small protein targets of a similar size.


Asunto(s)
Quimiocina CCL5/síntesis química , Animales , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Células CHO , Técnicas de Química Sintética/economía , Técnicas de Química Sintética/métodos , Quimiocina CCL5/química , Quimiocina CCL5/farmacología , Cricetulus , Células HEK293 , Humanos , Oxidación-Reducción , Pliegue de Proteína , Receptores CCR5/agonistas
3.
Cytokine ; 109: 81-93, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29903576

RESUMEN

Because of the level of attention it received due to its role as the principal HIV coreceptor, CCR5 has been described as a 'celebrity' chemokine receptor. Here we describe the development of CCR5 inhibitory strategies that have been developed for HIV therapy and which are now additionally being considered for use in HIV prevention and cure. The wealth of CCR5-related tools that have been developed during the intensive investigation of CCR5 as an HIV drug target can now be turned towards the study of CCR5 as a model chemokine receptor. We also summarize what is currently known about the cell biology and pharmacology of CCR5, providing an update on new areas of investigation that have emerged in recent research. Finally, we discuss the potential of CCR5 as a drug target for diseases other than HIV, discussing the evidence linking CCR5 and its natural chemokine ligands with inflammatory diseases, particularly neuroinflammation, and certain cancers. These pathologies may provide new uses for the strategies for CCR5 blockade originally developed to combat HIV/AIDS.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/prevención & control , VIH-1/metabolismo , Receptores CCR5/metabolismo , Receptores del VIH/antagonistas & inhibidores , Receptores del VIH/metabolismo , Humanos , Inflamación/patología , Transducción de Señal/fisiología
4.
Swiss Med Wkly ; 148: w14580, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29376550

RESUMEN

Of the two million people estimated to be newly infected with human immunodeficiency virus (HIV) every year, 95% live in poorer regions of the world where effective HIV treatment is not universally available. Strategies to reduce the spread of HIV infection, which predominantly occurs via sexual contact, are urgently required. In the absence of an effective vaccine, a number of approaches to prevent HIV infection have been developed. These include using potent anti-HIV drugs prophylactically, either through systemic administration or topical application to the mucosal tissues that HIV initially encounters during sexual transmission. Genetic deficiency of the chemokine receptor CCR5 provides individuals with a remarkable degree of protection from HIV acquisition. This is because CCR5 is the major coreceptor used by HIV to infect new target cells. Since CCR5 deficiency does not appear to carry any health disadvantages, targeting the receptor is a promising strategy for both therapy and prevention of HIV. In this review we first describe the advantages and limitations of the currently available strategies for HIV prevention, then we focus on strategies targeting CCR5, covering the progress that has been made in developing different classes of CCR5 inhibitors for prophylaxis, and the perspectives for their future development as new weapons in the global fight against HIV/AIDS.


Asunto(s)
Infecciones por VIH/prevención & control , Receptores CCR5/genética , Terapia Genética/métodos , Humanos , Profilaxis Pre-Exposición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA