Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19673, 2024 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-39187541

RESUMEN

Several human diseases, including cancer and neurodegeneration, are associated with excessive mitochondrial fragmentation. In this context, mitochondrial division inhibitor (Mdivi-1) has been tested as a therapeutic to block the fission-related protein dynamin-like protein-1 (Drp1). Recent studies suggest that Mdivi-1 interferes with mitochondrial bioenergetics and complex I function. Here we show that the molecular mechanism of Mdivi-1 is based on inhibition of complex I at the IQ site. This leads to the destabilization of complex I, impairs the assembly of N- and Q-respirasomes, and is associated with increased ROS production and reduced efficiency of ATP generation. Second, the calcium homeostasis of cells is impaired, which for example affects the electrical activity of neurons. Given the results presented here, a potential therapeutic application of Mdivi-1 is challenging because of its potential impact on synaptic activity. Similar to the Complex I inhibitor rotenone, Mdivi-1 may lead to neurodegenerative effects in the long term.


Asunto(s)
Complejo I de Transporte de Electrón , Mitocondrias , Quinazolinonas , Complejo I de Transporte de Electrón/metabolismo , Humanos , Quinazolinonas/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Ratones
2.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798678

RESUMEN

Pro-inflammatory macrophage activation is a hallmark example of how mitochondria serve as signaling organelles. Upon classical macrophage activation, oxidative phosphorylation sharply decreases and mitochondria are repurposed to accumulate signals that amplify effector function. However, evidence is conflicting as to whether this collapse in respiration is essential or largely dispensable. Here we systematically examine this question and show that reduced oxidative phosphorylation is not required for pro-inflammatory macrophage activation. Only stimuli that engage both MyD88- and TRIF-linked pathways decrease mitochondrial respiration, and different pro-inflammatory stimuli have varying effects on other bioenergetic parameters. Additionally, pharmacologic and genetic models of electron transport chain inhibition show no direct link between respiration and pro-inflammatory activation. Studies in mouse and human macrophages also reveal accumulation of the signaling metabolites succinate and itaconate can occur independently of characteristic breaks in the TCA cycle. Finally, in vivo activation of peritoneal macrophages further demonstrates that a pro-inflammatory response can be elicited without reductions to oxidative phosphorylation. Taken together, the results suggest the conventional model of mitochondrial reprogramming upon macrophage activation is incomplete.

3.
Biol Chem ; 404(5): 399-415, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36952351

RESUMEN

The orchestrated activity of the mitochondrial respiratory or electron transport chain (ETC) and ATP synthase convert reduction power (NADH, FADH2) into ATP, the cell's energy currency in a process named oxidative phosphorylation (OXPHOS). Three out of the four ETC complexes are found in supramolecular assemblies: complex I, III, and IV form the respiratory supercomplexes (SC). The plasticity model suggests that SC formation is a form of adaptation to changing conditions such as energy supply, redox state, and stress. Complex I, the NADH-dehydrogenase, is part of the largest supercomplex (CI + CIII2 + CIVn). Here, we demonstrate the role of NDUFB10, a subunit of the membrane arm of complex I, in complex I and supercomplex assembly on the one hand and bioenergetics function on the other. NDUFB10 knockout was correlated with a decrease of SCAF1, a supercomplex assembly factor, and a reduction of respiration and mitochondrial membrane potential. This likely is due to loss of proton pumping since the CI P P -module is downregulated and the P D -module is completely abolished in NDUFB10 knock outs.


Asunto(s)
Complejo I de Transporte de Electrón , NADH Deshidrogenasa , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , NAD/metabolismo , Fosforilación Oxidativa , NADH Deshidrogenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA