RESUMEN
Mitochondrial dysfunction is a basic mechanism leading to drug nephrotoxicity. Replacement of defective mitochondria with freshly isolated mitochondria is potentially a comprehensive tool to inhibit cytotoxicity induced by ifosfamide on renal proximal tubular cells (RPTCs). We hypothesize that the direct exposure of freshly isolated mitochondria into RPTCs affected by ifosfamide might restore mitochondrial function and reduce cytotoxicity. So, the aim of this study was to assess the protective effect of freshly isolated mitochondrial transplantation against ifosfamide-induced cytotoxicity in RPTCs. Therefore, the suspension of rat RPTCs (106 cells/ml) in Earle's solution with the pH of 7.4 at 37°C was incubated for 2 h after ifosfamide (4 mM) addition. Fresh mitochondria were isolated from the rat kidney and diluted to the needed concentrations at 4°C. The media containing suspended RPTCs was replaced with mitochondrial-supplemented media, which was exposed to cells for 4 hours in flasks-rotating in a water bath at 37°C. Statistical analysis demonstrated that mitochondrial administration reduced cytotoxicity, lipid peroxidation (LPO), reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) collapse, lysosomal membrane damage, extracellular oxidized glutathione (GSSG) level, and caspase-3 activity induced by ifosfamide in rat RPTCs. Moreover, mitochondrial transplantation increased the intracellular reduced glutathione (GSH) level in RPTCs affected by ifosfamide. According to the current study, mitochondrial transplantation is a promising therapeutic method in xenobiotic-caused nephrotoxicity pending successful complementary in vivo and clinical studies.
Asunto(s)
Ifosfamida , Insuficiencia Renal , Ratas , Animales , Ifosfamida/toxicidad , Estrés Oxidativo , Túbulos Renales Proximales , Riñón , Mitocondrias , Especies Reactivas de Oxígeno/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido , Potencial de la Membrana MitocondrialRESUMEN
The SARS-CoV-2 genome has undergone several mutations since the beginning of the pandemic in December 2019. A number of these mutants were associated with higher transmissibility, higher mortality, or hospitalization rates, which were named the variants of concern. B.1.617.2 or the Delta variant has made a lot of concern as it has been responsible for the most recent COVID-19 outbreaks throughout the world. Higher transmissibility, a 60 percent increase in hospitalization rates compared to the wild type, higher viral loads, and reduced response to available vaccines are among the key factors why this variant has become a variant of concern. 148 countries are currently fighting with this variant, hoping to better understand the epidemiological, immunological, and clinical characteristics of this disease in order to find the best way to overcome these new outbreaks. Although reduced efficiency of vaccines on this variant and its higher pre-symptomatic transmissibility have made it complicated to control the disease, higher vaccination coverage and following sanitation rules can help control the outbreaks.
Asunto(s)
COVID-19 , Pandemias , Brotes de Enfermedades , Humanos , SARS-CoV-2RESUMEN
Phytochemicals are the most valuable and comprehensive structures, which may have a broad range of protective benefits, from reducing inflammation and speeding healing to preventing infection and fighting cancer. Resveratrol (RSV) is a natural phenolic compound from the oligomeric stilbenoids group, which is usually found in daily human diet, such as grape, peanut, berries and grains. It exhibits anti-inflammatory, neuroprotective, antioxidant, and cancer prevention and treatment effects. RSV is thought to have an impressive outcome in colorectal cancer (CRC) treatment through the vital molecules and cancer signaling pathways, including SIRT1, P53, P21, AMPK, ROS, BMP7, COX-2, NO, caspases, Wnt, TNFs, NF-κB, EMT, and pentose phosphate pathway. Therefore, this paper reviews the current researches on the pharmacological effects and pharmacokinetics of resveratrol and its drug delivery system, as well as clinical studies involving CRC.