Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Rep ; 14(1): 18875, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39143185

RESUMEN

Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is one of the most important neglected diseases in Latin America. The limited use of the current nitro-derivative-based chemotherapy highlights the need for alternative drugs and the identification of their molecular targets. In this study, we investigated the trypanocidal effect of the sesquiterpene lactone dehydroleucodine (DhL) and its derivatives, focusing on the antioxidative defense of the parasites. DhL and two derivatives, at lesser extent, displayed antiproliferative effect on the parasites. This effect was blocked by the reducing agent glutathione (GSH). Treated parasites exhibited increased intracellular ROS concentration and trypanothione synthetase activity, accompanied by mitochondrial swelling. Although molecular dynamics studies predicted that GSH would not interact with DhL, 1H-NMR analysis confirmed that GSH could protect parasites by interacting with the lactone. When parasites overexpressing mitochondrial tryparedoxin peroxidase were incubated with DhL, its effect was attenuated. Overexpression of cytosolic tryparedoxin peroxidase also provided some protection against DhL. These findings suggest that DhL induces oxidative imbalance in T. cruzi, offering new insights into potential drug targets against this parasite.


Asunto(s)
Lactonas , Especies Reactivas de Oxígeno , Sesquiterpenos , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/metabolismo , Sesquiterpenos/farmacología , Lactonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Tripanocidas/farmacología , Glutatión/metabolismo , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Proteínas Protozoarias/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Amida Sintasas
2.
bioRxiv ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39131332

RESUMEN

GABA B receptors (GABABRs) are heterodimeric seven-transmembrane receptors that interact with a range of proteins and form large protein complexes on cholesterol-rich membrane microdomains. As the brain ages, membrane cholesterol levels exhibit alterations, although it remains unclear how these changes impact protein-protein interactions and downstream signaling. Herein, we studied the structural bases for the interaction between GABABR and the KCC2 transporter, including their protein expression and distribution, and we compared data between young and aged rat cerebella. Also, we analyzed lipid profiles for both groups, and we used molecular dynamics simulations on three plasma membrane systems with different cholesterol concentrations, to further explore the GABABR-transporter interaction. Based on our results, we report that a significant decrease in GABAB2 subunit expression occurs in the aged rat cerebella. After performing a comparative co-immunoprecipitation analysis, we confirm that GABABR and KCC2 form a protein complex in adult and aged rat cerebella, although their interaction levels are reduced substantially as the cerebellum ages. On the other hand, our lipid analyses reveal a significant increase in cholesterol and sphingomyelin levels of the aged cerebella. Finally, we used the Martini coarse-grained model to conduct molecular dynamics simulations, from which we observed that membrane cholesterol concentrations can dictate whether the GABABR tail domains physically establish G protein-independent contacts with a transporter, and the timing when those associations eventually occur. Taken together, our findings illustrate how age-related alterations in membrane cholesterol levels affect protein-protein interactions, and how they could play a crucial role in regulating GABABR's interactome-mediated signaling. Significance Statement: This study elucidates age-related changes in cerebellar GABAB receptors (GABABRs), KCC2, and plasma membrane lipids, shedding light on mechanisms underlying neurological decline. Molecular dynamics simulations reveal how membrane lipids influence protein-protein interactions, offering insights into age-related neurodegeneration. The findings underscore the broader impact of cerebellar aging on motor functions, cognition, and emotional processing in the elderly. By elucidating plasma membrane regulation and GABAergic dynamics, this research lays the groundwork for understanding aging-related neurological disorders and inspires further investigation into therapeutic interventions.

3.
ACS Nano ; 18(24): 15651-15660, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38830824

RESUMEN

Lipid bilayers possess the capacity for self-assembly due to the amphipathic nature of lipid molecules, which have both hydrophobic and hydrophilic regions. When confined, lipid bilayers exhibit astonishing versatility in their forms, adopting diverse shapes that are challenging to observe through experimental means. Exploiting this adaptability, lipid structures motivate the development of bio-inspired mechanomaterials and integrated nanobio-interfaces that could seamlessly merge with biological entities, ultimately bridging the gap between synthetic and biological systems. In this work, we demonstrate how, in numerical simulations of multivesicular bodies, a fascinating evolution unfolds from an initial semblance of order toward states of higher entropy over time. We observe dynamic rearrangements in confined vesicles that reveal unexpected limit shapes of distinct geometric patterns. We identify five structures as the basic building blocks that systematically repeat under various conditions of size and composition. Moreover, we observe more complex and less frequent shapes that emerge in confined spaces. Our results provide insights into the dynamics of multivesicular systems, offering a richer understanding of how confined lipid bodies spontaneously self-organize.


Asunto(s)
Cuerpos Multivesiculares , Cuerpos Multivesiculares/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Entropía , Interacciones Hidrofóbicas e Hidrofílicas
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167261, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38777099

RESUMEN

PURA, also known as Pur-alpha, is an evolutionarily conserved DNA/RNA-binding protein crucial for various cellular processes, including DNA replication, transcriptional regulation, and translational control. Comprising three PUR domains, it engages with nucleic acids and has a role in protein-protein interactions. The manifestation of PURA syndrome, arising from mutations in the PURA gene, presents neurologically with developmental delay, hypotonia, and seizures. In our prior work from 2018, we highlighted the unique case of a PURA patient displaying hypoglycorrhachia, suggesting a potential association with GLUT1 dysfunction in this syndrome. In this current study, we expand the patient cohort with PURA mutations exhibiting hypoglycorrhachia and aim to unravel the molecular basis of this phenomenon. We established an in vitro model in HeLa cells to modulate PURA expression and investigated GLUT1 function and expression. Our findings indicate that PURA levels directly impact glucose uptake through the functioning of GLUT1, without influencing significantly GLUT1 expression. Moreover, our study reveals evidence for a possible physical interaction between PURA and GLUT1, demonstrated by colocalization and co-immunoprecipitation of both proteins. Computational analyses, employing molecular dynamics, further corroborates these findings, demonstrating that PURA:GLUT1 interactions are plausible, and that the stability of the complex is altered when PURA is truncated and/or mutated. In conclusion, our results suggest that PURA plays a pivotal role in driving the function of GLUT1 for glucose uptake, potentially forming a regulatory complex. Additional investigations are warranted to elucidate the precise mechanisms governing this complex and its significance in ensuring proper GLUT1 function.


Asunto(s)
Transportador de Glucosa de Tipo 1 , Femenino , Humanos , Masculino , Encéfalo/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , Células HeLa , Mutación , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
5.
Biochemistry ; 63(6): 815-826, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38349279

RESUMEN

Membrane fusion is a crucial mechanism in a wide variety of important events in cell biology from viral infection to exocytosis. However, despite many efforts and much progress, cell-cell fusion has remained elusive to our understanding. Along the life of the fusion pore, large conformational changes take place from the initial lipid bilayer bending, passing through the hemifusion intermediates, and ending with the formation of the first nascent fusion pore. In this sense, computer simulations are an ideal technique for describing such complex lipid remodeling at the molecular level. In this work, we studied the role played by the muscle-specific membrane protein Myomerger during the formation of the fusion pore. We have conducted µs length atomistic and coarse-grained molecular dynamics, together with free-energy calculations using ad hoc collective variables. Our results show that Myomerger favors the hemifusion diaphragm-stalk transition, reduces the nucleation-expansion energy difference, and promotes the formation of nonenlarging fusion pores.


Asunto(s)
Membrana Dobles de Lípidos , Fusión de Membrana , Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana/fisiología , Membranas/metabolismo , Simulación de Dinámica Molecular , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo
6.
Mol Ther Nucleic Acids ; 33: 698-712, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37662970

RESUMEN

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects. One such target is the B cell surface protein CD22. The restricted expression of CD22 on the B-cell lineage and its ligand-induced internalizing properties make it an attractive target in cases of B cell malignancies. To target B-ALL and the CD22 protein, we performed cell internalization SELEX (Systematic Evolution of Ligands by EXponential enrichment) followed by molecular docking to identify internalizing aptamers specific for B-ALL cells that bind the CD22 cell-surface receptor. We identified two RNA aptamers, B-ALL1 and B-ALL2, that target human malignant B cells, with B-ALL1 the first documented RNA aptamer interacting with the CD22 antigen. These B-ALL-specific aptamers represent an important first step toward developing novel targeted therapies for B cell malignancy treatments.

7.
Front Cell Dev Biol ; 11: 1125988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287458

RESUMEN

The sperm acrosome is a large dense-core granule whose contents are secreted by regulated exocytosis at fertilization through the opening of numerous fusion pores between the acrosomal and plasma membranes. In other cells, the nascent pore generated when the membrane surrounding a secretory vesicle fuses with the plasma membrane may have different fates. In sperm, pore dilation leads to the vesiculation and release of these membranes, together with the granule contents. α-Synuclein is a small cytosolic protein claimed to exhibit different roles in exocytic pathways in neurons and neuroendocrine cells. Here, we scrutinized its function in human sperm. Western blot revealed the presence of α-synuclein and indirect immunofluorescence its localization to the acrosomal domain of human sperm. Despite its small size, the protein was retained following permeabilization of the plasma membrane with streptolysin O. α-Synuclein was required for acrosomal release, as demonstrated by the inability of an inducer to elicit exocytosis when permeabilized human sperm were loaded with inhibitory antibodies to human α-synuclein. The antibodies halted calcium-induced secretion when introduced after the acrosome docked to the cell membrane. Two functional assays, fluorescence and transmission electron microscopies revealed that the stabilization of open fusion pores was responsible for the secretion blockage. Interestingly, synaptobrevin was insensitive to neurotoxin cleavage at this point, an indication of its engagement in cis SNARE complexes. The very existence of such complexes during AE reflects a new paradigm. Recombinant α-synuclein rescued the inhibitory effects of the anti-α-synuclein antibodies and of a chimeric Rab3A-22A protein that also inhibits AE after fusion pore opening. We applied restrained molecular dynamics simulations to compare the energy cost of expanding a nascent fusion pore between two model membranes and found it higher in the absence than in the presence of α-synuclein. Hence, our results suggest that α-synuclein is essential for expanding fusion pores.

8.
Genet Mol Biol ; 46(2): e20230005, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37338301

RESUMEN

Mutation landscapes and signatures have been thoroughly studied in SARS-CoV-2. Here, we analyse those patterns and link their changes to the viral replication tissue in the respiratory tract. Surprisingly, a substantial difference in those patterns is observed in samples from vaccinated patients. Hence, we propose a model to explain where those mutations could originate during the replication cycle.

9.
ACS Chem Neurosci ; 14(11): 2049-2059, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37192400

RESUMEN

Today, it is widely accepted that intrinsic disorder is strongly related to the cell cycle, during mitosis, differentiation, and apoptosis. Of particular interest are hybrid proteins possessing both structured and unstructured domains that are critical in human health and disease, such as α-synuclein. In this work, we describe how α-synuclein interacts with the nascent fusion pore as it evolves toward expansion. We unveil the key role played by its intrinsically disordered region as a thermodynamic regulator of the nucleation-expansion energy barrier. By analyzing a truncated variant of α-synuclein that lacks the disordered region, we find that the landscape of protein interactions with PIP2 and POPS lipids is highly altered, ultimately increasing the energy cost for the fusion pore to transit from nucleation to expansion. We conclude that the intrinsically disordered region in full-length α-synuclein recognizes and allocates pivotal protein:lipid interactions during membrane remodeling in the first stages of the fusion pore.


Asunto(s)
alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Termodinámica
10.
Microb Genom ; 9(5)2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37185044

RESUMEN

Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Mutación , Bacterias/genética , Pulmón
11.
J Chem Theory Comput ; 18(7): 4544-4554, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35759758

RESUMEN

The fusion pore controls the release of exocytotic vesicle contents through a precise orchestration of lipids from the fusing membranes and proteins. There is a major lipid reorganization during the different stages in life of the fusion pore (membrane fusion, nucleation, and expansion) that can be scrutinized thermodynamically. In this work, using umbrella sampling simulations we describe the expansion of the fusion pore. We have calculated free energy profiles to drive a nascent, just nucleated, fusion pore to its expanded configuration. We have quantified the effects on the free energy of one and two Synaptotagmin-1 C2B domains in the cytosolic space. We show that C2B domains cumulatively reduce the cost for expansion, favoring the system to evolve toward full fusion. Finally, by conducting thousands of unbiased molecular dynamics simulations, we show that C2B domains significantly decrease the probability of kiss-and-run events.


Asunto(s)
Calcio , Exocitosis , Calcio/metabolismo , Fusión de Membrana
12.
Chem Sci ; 13(12): 3437-3446, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35432859

RESUMEN

Synaptotagmin-1 is a low-affinity Ca2+ sensor that triggers synchronous vesicle fusion. It contains two similar C2 domains (C2A and C2B) that cooperate in membrane binding, being the C2B domain mainly responsible for the membrane fusion process due to its polybasic patch KRLKKKKTTIKK (321-332). In this work, a master-servant mechanism between two identical C2B domains is shown to control the formation of the fusion stalk in a calcium-independent manner. Two regions in C2B are essential for the process, the well-known polybasic patch and a recently described pair of arginines (398 399). The master domain shows strong PIP2 interactions with its polybasic patch and its pair of arginines. At the same time, the servant analogously cooperates with the master to reduce the total work to form the fusion stalk. The strategic mutation (T328E, T329E) in both master and servant domains disrupts the cooperative mechanism, drastically increasing the free energy needed to induce the fusion stalk, however, with negligible effects on the master domain interactions with PIP2. These data point to a difference in the behavior of the servant domain, which is unable to sustain its PIP2 interactions neither through its polybasic patch nor through its pair of arginines, and in the end, losing its ability to assist the master in the formation of the fusion stalk.

13.
Soft Matter ; 17(36): 8314-8321, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34550159

RESUMEN

Styrene-maleic acid copolymers have become an advantageous detergent-free alternative for membrane protein isolation. Since their discovery, experimental membrane protein extraction and purification by keeping intact their lipid environment has become significantly easier. With the aim of identifying new applications of these interesting copolymers, their molecular binding and functioning mechanisms have recently become intense objects of study. In this work, we describe the use of styrene-maleic acid copolymers as an artificial tool to stabilize the fusion pore. We show that when these copolymers circumscribe the water channel that defines the fusion pore, they keep it from shrinking and closing. We describe how only intra-organelle copolymers have stabilizing capabilities while extra-organelle ones have negligible or even contrary effects on the fusion pore life-time.


Asunto(s)
Membrana Dobles de Lípidos , Maleatos , Orgánulos , Polímeros , Poliestirenos
14.
Biosystems ; 209: 104505, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34403719

RESUMEN

The tetraspanin family plays key roles in many physiological processes, such as, tumour invasion, cell motility, virus infection, cell attachment and entry. Tetraspanins function as molecular scaffolds organized in microdomains with interesting downstream cellular consequences. However, despite their relevance in human physiology, the precise mechanisms of their various functions remain elusive. In particular, the full-length CD81 tetraspanin has interesting cholesterol-related properties that modulate its activity in cells. In this work, we study the opening transition of CD81 under different conditions. We propose that such conformational change is a collaborative process enhanced by simultaneous interactions between multiple identical CD81 tetraspanins. With molecular dynamics simulations we describe the crucial role of a ternary lipid bilayer with cholesterol in CD81 conformational dynamics, observing two emergent properties: first, clusters of CD81 collectively segregate one tetraspanin while favouring one opening transition, second, cumulative cholesterol sequestering by CD81 tetraspanins inhibits large membrane deformations due to local density variations.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Tetraspanina 28/metabolismo , Algoritmos , Membrana Celular/química , Colesterol/química , Humanos , Membrana Dobles de Lípidos/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Unión Proteica , Conformación Proteica , Tetraspanina 28/química , Termodinámica
15.
J Chem Theory Comput ; 16(12): 7840-7851, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33166466

RESUMEN

Fusion pores serve as an effective mechanism to connect intracellular organelles and release vesicle contents during exocytosis. A complex lipid rearrangement takes place as membranes approximate, bend, fuse, and establish a traversing water channel to define the fusion pore, linking initially isolated chambers. Thermodynamically, the process is unfavorable and thought to be mediated by specialized proteins. In this work, we have developed a reaction coordinate to induce fusion pores from initially flat and parallel lipid bilayers and we have used it to describe the effects of the synaptotagmin-1 C2B domain during the process. We have obtained free-energy profiles of the whole lipid reorganization in biologically realistic membranes, going from planar and parallel bilayers through stalk hemifusion to water channel formation. Our results point to a lysine-rich polybasic region on synaptotagmin-1 C2B as the key to lipid reorganization control through the formation of phosphatidylinositol bisphosphate clusters that stabilize the fusion pore.


Asunto(s)
Membrana Dobles de Lípidos/química , Fosfatidilinositol 4,5-Difosfato/química , Sinaptotagmina I/química , Humanos , Dominios Proteicos , Estabilidad Proteica , Termodinámica
16.
Phys Chem Chem Phys ; 22(9): 5255-5263, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32091512

RESUMEN

Currently, membrane curvature is understood as an active mechanism to control cells spatial organization and activity. Protein processes involved in sensing and generating curvature are therefore of major interest. In this work, we have studied α-synuclein interactions with a model lipid bilayer, inducing curvature in a controlled manner and describing protein responses at molecular level. We show that the intrinsically disordered region of α-synuclein binds to the bilayer as an acknowledgment to the induced curvature, a mechanism used by the interacting protein-membrane assembly to relieve free energy. We have calculated free energies for bending the bilayer with α-synuclein adsorbed on the surface and we have established the crucial role of the intrinsically disordered region, suggesting that a dynamic order/disorder interplay takes place as the bilayer reorganizes to bend.


Asunto(s)
Membrana Dobles de Lípidos/química , alfa-Sinucleína/química , Membrana Dobles de Lípidos/metabolismo , Modelos Teóricos , Unión Proteica , Propiedades de Superficie , Termodinámica , alfa-Sinucleína/metabolismo
17.
Mol Hum Reprod ; 25(7): 344-358, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31194868

RESUMEN

N-ethylmaleimide-sensitive factor (NSF) disassembles fusion-incompetent cis soluble-NSF attachment protein receptor (SNARE) complexes making monomeric SNAREs available for subsequent trans pairing and fusion. In most cells the activity of NSF is constitutive, but in Jurkat cells and sperm it is repressed by tyrosine phosphorylation; the phosphomimetic mutant NSF-Y83E inhibits secretion in the former. The questions addressed here are if and how the NSF mutant influences the configuration of the SNARE complex. Our model is human sperm, where the initiation of exocytosis (acrosome reaction (AR)) de-represses the activity of NSF through protein tyrosine phosphatase 1B (PTP1B)-mediated dephosphorylation. We developed a fluorescence microscopy-based method to show that capacitation increased, and challenging with an AR inducer decreased, the number of cells with tyrosine-phosphorylated PTP1B substrates in the acrosomal domain. Results from bioinformatic and biochemical approaches using purified recombinant proteins revealed that NSF-Y83E bound PTP1B and thereupon inhibited its catalytic activity. Mutant NSF introduced into streptolysin O-permeabilized sperm impaired cis SNARE complex disassembly, blocking the AR; subsequent addition of PTP1B rescued exocytosis. We propose that NSF-Y83E prevents endogenous PTP1B from dephosphorylating sperm NSF, thus maintaining NSF's activity in a repressed mode and the SNARE complex unable to dissociate. The contribution of this paper to the sperm biology field is the detection of PTP1B substrates, one of them likely being NSF, whose tyrosine phosphorylation status varies during capacitation and the AR. The contribution of this paper to the membrane traffic field is to have generated direct evidence that explains the dominant-negative role of the phosphomimetic mutant NSF-Y83E.


Asunto(s)
Proteínas Sensibles a N-Etilmaleimida/metabolismo , Fosforilación/fisiología , Proteínas SNARE/metabolismo , Reacción Acrosómica/fisiología , Western Blotting , Catálisis , Biología Computacional , Exocitosis/fisiología , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Masculino , Plásmidos , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Espermatozoides/metabolismo , Tirosina/metabolismo
18.
Biochim Biophys Acta Mol Cell Res ; 1866(4): 612-622, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30599141

RESUMEN

Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.


Asunto(s)
Reacción Acrosómica , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Espermatozoides/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab27 de Unión a GTP/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Acrosoma/metabolismo , Exocitosis , Humanos , Masculino , Proteína de Unión al GTP rab3A/química , Rabfilina-3A
19.
Phys Chem Chem Phys ; 21(1): 268-274, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30520484

RESUMEN

Are the dimerization of transmembrane (TM) domains and the reorganization of the lipid bilayer two independent events? Does one event induce or interfere with the other? In this work, we have performed well-tempered metadynamics simulations to calculate the free energy cost to bend a model ternary lipid bilayer in the presence of a TM peptide in its dimer form. We have compared this result with the free energy cost needed to bend a bilayer-only system. Additionally, we have calculated the free energy cost to form a model TM peptide dimer quantitatively describing how lipids reorganize themselves in response to the increase of the membrane curvature and to the lipid-peptide interactions. Our results indicate that the formation of the peptide dimer inside the bilayer increases the cost of the membrane bending due to the spontaneous clustering of cholesterol molecules.


Asunto(s)
Colesterol/química , Membrana Dobles de Lípidos/química , Modelos Biológicos , Dominios Proteicos/fisiología , Dimerización , Metabolismo Energético , Simulación de Dinámica Molecular
20.
Front Cell Dev Biol ; 6: 33, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29670879

RESUMEN

Human Adipose-derived mesenchymal stem/stromal cells (hASCs) are of great interest because of their potential for therapeutic approaches. The method described here covers every single step necessary for hASCs isolation from subcutaneous abdominal adipose tissue, multicolor phenotyping by flow cytometry, and quantitative determination of adipogenic differentiation status by means of lipid droplets (LDs) accumulation, and Western blot analysis. Moreover, to simultaneously analyze both LDs accumulation and cellular proteins localization by fluorescence microscopy, we combined Oil Red O (ORO) staining with immunofluorescence detection. For LDs quantification we wrote a program for automatic ORO-stained digital image processing implemented in Octave, a freely available software package. Our method is based on the use of the traditional low cost neutral lipids dye ORO, which can be imaged both by bright-field and fluorescence microscopy. The utilization of ORO instead of other more expensive lipid-specific dyes, together with the fact that the whole method has been designed employing cost-effective culture reagents (standard culture medium and serum), makes it affordable for tight-budget research laboratories. These may be replaced, if necessary or desired, by defined xeno-free reagents for clinical research and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA