Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Immunity ; 37(2): 223-34, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22921120

RESUMEN

Autophagy is a fundamental biological process of the eukaryotic cell contributing to diverse cellular and physiological functions including cell-autonomous defense against intracellular pathogens. Here, we screened the Rab family of membrane trafficking regulators for effects on autophagic elimination of Mycobacterium tuberculosis var. bovis BCG and found that Rab8b and its downstream interacting partner, innate immunity regulator TBK-1, are required for autophagic elimination of mycobacteria in macrophages. TBK-1 was necessary for autophagic maturation. TBK-1 coordinated assembly and function of the autophagic machinery and phosphorylated the autophagic adaptor p62 (sequestosome 1) on Ser-403, a residue essential for its role in autophagic clearance. A key proinflammatory cytokine, IL-1ß, induced autophagy leading to autophagic killing of mycobacteria in macrophages, and this IL-1ß activity was dependent on TBK-1. Thus, TBK-1 is a key regulator of immunological autophagy and is responsible for the maturation of autophagosomes into lytic bactericidal organelles.


Asunto(s)
Autofagia/inmunología , Macrófagos/inmunología , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas de Unión al GTP rab/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 7 Relacionada con la Autofagia , Proteínas Fluorescentes Verdes , Células HeLa , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Humanos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Mycobacterium bovis/inmunología , Fagosomas/efectos de los fármacos , Fagosomas/inmunología , Fagosomas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño , Proteína Sequestosoma-1 , Serina/inmunología , Serina/metabolismo , Tuberculosis/inmunología , Proteínas de Unión al GTP rab/genética
2.
Nat Cell Biol ; 12(12): 1154-65, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21102437

RESUMEN

IRGM, a human immunity-related GTPase, confers autophagic defence against intracellular pathogens by an unknown mechanism. Here, we report an unexpected mode of IRGM action. IRGM demonstrated differential affinity for the mitochondrial lipid cardiolipin, translocated to mitochondria, affected mitochondrial fission and induced autophagy. Mitochondrial fission was necessary for autophagic control of intracellular mycobacteria by IRGM. IRGM influenced mitochondrial membrane polarization and cell death. Overexpression of IRGMd, but not IRGMb splice isoforms, caused mitochondrial depolarization and autophagy-independent, but Bax/Bak-dependent, cell death. By acting on mitochondria, IRGM confers autophagic protection or cell death, explaining IRGM action both in defence against tuberculosis and in the damaging inflammation caused by Crohn's disease.


Asunto(s)
Autofagia , Proteínas de Unión al GTP/metabolismo , Mitocondrias/metabolismo , Animales , Cardiolipinas/metabolismo , Línea Celular , Dinaminas , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/análisis , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/química , Proteínas Mitocondriales/metabolismo , Isoformas de Proteínas/metabolismo
3.
Curr Top Microbiol Immunol ; 335: 169-88, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19802565

RESUMEN

The recognition of autophagy as an immune mechanism has been affirmed in recent years. One of the model systems that has helped in the development of our current understanding of how autophagy and more traditional immunity systems cooperate in defense against intracellular pathogens is macrophage infection with Mycobacterium tuberculosis. M. tuberculosis is a highly significant human pathogen that latently infects billions of people and causes active disease in millions of patients worldwide. The ability of the tubercle bacillus to persist in human populations rests upon its macrophage parasitism. One of the initial reports on the ability of autophagy to act as a cell-autonomous innate immunity mechanism capable of eliminating intracellular bacteria was on M. tuberculosis. This model system has further contributed to the recognition of multiple connections between conventional immune regulators and autophagy. In this chapter, we will review how these studies have helped to establish the following principles: (1) autophagy functions as an innate defense mechanism against intracellular microbes; (2) autophagy is under the control of pattern recognition receptors (PRR) such as Toll-like receptors (TLR), and it acts as one of the immunological output effectors of PRR and TLR signaling; (3) autophagy is one of the effector functions associated with the immunity-regulated GTPases, which were initially characterized as molecules involved in cell-autonomous defense, but whose mechanism of function was unknown until recently; (4) autophagy is an immune effector of Th1/Th2 T cell response polarization-autophagy is activated by Th1 cytokines (which act in defense against intracellular pathogens) and is inhibited by Th2 cytokines (which make cells accessible to intracellular pathogens). Collectively, the studies employing the M. tuberculosis autophagy model system have contributed to the development of a more comprehensive view of autophagy as an immunological process. This work and related studies by others have led us to propose a model of how autophagy, an ancient innate immunity defense, became integrated over the course of evolution with other immune mechanisms of ever-increasing complexity.


Asunto(s)
Autofagia/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Humanos , Inmunidad Innata , Receptores de Reconocimiento de Patrones/inmunología , Células TH1/inmunología , Células Th2/inmunología , Receptores Toll-Like/inmunología
4.
Immunol Rev ; 227(1): 189-202, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19120485

RESUMEN

Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti-microbial effector of Toll-like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn's disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of alpha-protobacteria-pre-eukaryote relationships, leading up to modern eukaryotic cell-mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.


Asunto(s)
Autofagia/inmunología , Proteínas de Unión al GTP/inmunología , Inmunidad Innata , Proteínas Adaptadoras de Señalización NOD/metabolismo , Receptores Toll-Like/metabolismo , Animales , Presentación de Antígeno/inmunología , Autofagia/genética , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Citocinas/genética , Citocinas/metabolismo , Evolución Molecular , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Infecciones/inmunología , Sistema de Señalización de MAP Quinasas/inmunología , Mitocondrias/inmunología , Proteínas Adaptadoras de Señalización NOD/inmunología , Células TH1/inmunología , Células TH1/metabolismo , Células Th2/inmunología , Células Th2/metabolismo , Receptores Toll-Like/inmunología
5.
Vet Immunol Immunopathol ; 128(1-3): 37-43, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19026454

RESUMEN

Autophagy is a major intracellular pathway for the lysosomal degradation of long-lived cytoplasmic macromolecules and damaged or surplus organelles. More recently, autophagy has also been linked with innate and adaptive immune responses against intracellular pathogens, including Mycobacterium tuberculosis, which can survive within macrophages by blocking fusion of the phagosome with lysosomes. Induction of autophagy by the Th1 cytokine IFN-gamma enables infected macrophages to overcome this phagosome maturation block and inhibit the intracellular survival of mycobacteria. Conversely, the Th2 cytokines IL-4 and IL-13 inhibit autophagy in murine and human macrophages. We discuss how differential modulation of autophagy by Th1 and Th2 cytokines may represent an important feature of the host response to mycobacteria.


Asunto(s)
Autofagia/fisiología , Citocinas/fisiología , Macrófagos/microbiología , Macrófagos/fisiología , Mycobacterium tuberculosis/fisiología , Animales , Humanos , Inmunidad Innata , Interferón gamma/fisiología , Interleucina-13/fisiología , Interleucina-4/fisiología , Fagosomas , Células TH1/inmunología , Células Th2/inmunología
6.
Dev Cell ; 15(5): 641-2, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19000829

RESUMEN

Recent genome-wide association studies have linked polymorphisms in two atophagy genes, Atg16L1 and IRGM, with Crohn's Disease. Now, experiments with Atg16L1 transgenic mice indicate multiple roles for autophagy in inflammatory bowel disease via effects on Paneth cells, a runaway inflammasome, and the proinflammatory cytokine IL-1beta.


Asunto(s)
Autofagia , Enfermedad de Crohn/inmunología , Proteína Adaptadora de Señalización NOD2/inmunología , Células de Paneth/inmunología , Animales , Proteínas Relacionadas con la Autofagia , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Enfermedad de Crohn/genética , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Transgénicos
7.
Cell Host Microbe ; 3(4): 224-32, 2008 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-18407066

RESUMEN

Mycobacterium tuberculosis (Mtb) parasitizes host macrophages and subverts host innate and adaptive immunity. Several cytokines elicited by Mtb are mediators of mycobacterial clearance or are involved in tuberculosis pathology. Surprisingly, interleukin-1beta (IL-1beta), a major proinflammatory cytokine, has not been implicated in host-Mtb interactions. IL-1beta is activated by processing upon assembly of the inflammasome, a specialized inflammatory caspase-activating protein complex. Here, we show that Mtb prevents inflammasome activation and IL-1beta processing. An Mtb gene, zmp1, which encodes a putative Zn(2+) metalloprotease, is required for this process. Infection of macrophages with zmp1-deleted Mtb triggered activation of the inflammasome, resulting in increased IL-1beta secretion, enhanced maturation of Mtb containing phagosomes, improved mycobacterial clearance by macrophages, and lower bacterial burden in the lungs of aerosol-infected mice. Thus, we uncovered a previously masked role for IL-1beta in the control of Mtb and a mycobacterial system that prevents inflammasome and, therefore, IL-1beta activation.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Inflamación/inmunología , Metaloproteasas/fisiología , Complejos Multiproteicos/metabolismo , Mycobacterium tuberculosis/enzimología , Fagosomas/inmunología , Tuberculosis/metabolismo , Animales , Caspasa 1/metabolismo , Diferenciación Celular , Línea Celular , Regulación hacia Abajo , Genes Bacterianos/fisiología , Interleucina-1beta/biosíntesis , Pulmón/microbiología , Activación de Macrófagos , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Complejos Multiproteicos/genética , Mutación , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología , Tuberculosis/microbiología , Virulencia
8.
PLoS Pathog ; 3(12): e186, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18069890

RESUMEN

Mycobacterium tuberculosis is sensitive to nitric oxide generated by inducible nitric oxide synthase (iNOS). Consequently, to ensure its survival in macrophages, M. tuberculosis inhibits iNOS recruitment to its phagosome by an unknown mechanism. Here we report the mechanism underlying this process, whereby mycobacteria affect the scaffolding protein EBP50, which normally binds to iNOS and links it to the actin cytoskeleton. Phagosomes harboring live mycobacteria showed reduced capacity to retain EBP50, consistent with lower iNOS recruitment. EBP50 was found on purified phagosomes, and its expression increased upon macrophage activation, paralleling expression changes seen with iNOS. Overexpression of EBP50 increased while EBP50 knockdown decreased iNOS recruitment to phagosomes. Knockdown of EBP50 enhanced mycobacterial survival in activated macrophages. We tested another actin organizer, coronin-1, implicated in mycobacterium-macrophage interaction for contribution to iNOS exclusion. A knockdown of coronin-1 resulted in increased iNOS recruitment to model latex bead phagosomes but did not increase iNOS recruitment to phagosomes with live mycobacteria and did not affect mycobacterial survival. Our findings are consistent with a model for the block in iNOS association with mycobacterial phagosomes as a mechanism dependent primarily on reduced EBP50 recruitment.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Mycobacterium tuberculosis/patogenicidad , Mycobacterium/fisiología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fagosomas/enzimología , Actinas/metabolismo , Animales , Sitios de Unión , Línea Celular , Citoesqueleto/metabolismo , Silenciador del Gen , Interacciones Huésped-Patógeno/efectos de los fármacos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Activación de Macrófagos , Macrófagos/efectos de los fármacos , Macrófagos/enzimología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Mycobacterium bovis/metabolismo , Mycobacterium bovis/patogenicidad , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Fagosomas/inmunología , Fosfoproteínas , ARN Interferente Pequeño/genética , Intercambiadores de Sodio-Hidrógeno
9.
Immunity ; 27(3): 505-17, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17892853

RESUMEN

Autophagy is a recently recognized immune effector mechanism against intracellular pathogens. The role of autophagy in innate immunity has been well established, but the extent of its regulation by the adaptive immune response is less well understood. The T helper 1 (Th1) cell cytokine IFN-gamma induces autophagy in macrophages to eliminate Mycobacterium tuberculosis. Here, we report that Th2 cytokines affect autophagy in macrophages and their ability to control intracellular M. tuberculosis. IL-4 and IL-13 abrogated autophagy and autophagy-mediated killing of intracellular mycobacteria in murine and human macrophages. Inhibition of starvation-induced autophagy by IL-4 and IL-13 was dependent on Akt signaling, whereas the inhibition of IFN-gamma-induced autophagy was Akt independent and signal transducer and activator of transcription 6 (STAT6) dependent. These findings establish a mechanism through which Th1-Th2 polarization differentially affects the immune control of intracellular pathogens.


Asunto(s)
Autofagia/inmunología , Interleucina-13/inmunología , Interleucina-4/inmunología , Macrófagos/inmunología , Mycobacterium tuberculosis/inmunología , Células Th2/inmunología , Animales , Línea Celular , Citocinas , Citometría de Flujo , Humanos , Immunoblotting , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/microbiología , Ratones , Microscopía Confocal , Fagosomas/inmunología , Fagosomas/metabolismo , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT6/inmunología , Factor de Transcripción STAT6/metabolismo , Transfección
10.
Biochem Soc Symp ; (74): 141-8, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17233587

RESUMEN

Interconversions of phosphoinositides play a pivotal role during phagocytosis and at the subsequent stages of phagosomal maturation into the phagolysosome. Several model systems have been used to study the role of phosphoinositides in phagosomal membrane remodelling. These include phagosomes formed by inanimate objects such as latex beads, or pathogenic bacteria, e.g. Mycobacterium tuberculosis. The latter category provides naturally occurring tools to dissect membrane trafficking processes governing phagolysosome biogenesis. M. tuberculosis persists in infected macrophages by blocking Rab conversion and affecting Rab effectors. One of the major Rab effectors involved in this process is the type III phosphatidylinositol 3-kinase hVPS34. The lipid kinase hVPS34 and its enzymatic product PtdIns3P are critical for the default pathway of phagosomal maturation into phagolysosomes. Mycobacteria block PtdIns3P production and thus arrest phagosomal maturation. PtdIns3P is also critical for the process of autophagy, recently recognized as an effector of innate immunity defenses. Induction of autophagy by pharmacological, physiological, or immunological means, overcomes mycobacterial phagosome maturation block in a PtdIns3P generation dependent manner and eliminates intracellular M. tuberculosis. PtdIns3P and PtdIns3P-dependent processes represent an important cellular nexus where fundamental trafficking processes, disease causing host-pathogen interactions, and innate and adaptive immunity defense mechanisms meet.


Asunto(s)
Autofagia/fisiología , Fagosomas/fisiología , Fosfatidilinositoles/metabolismo , Animales , Humanos , Modelos Biológicos , Mycobacterium tuberculosis/fisiología , Fagocitosis/fisiología , Fosfatos de Fosfatidilinositol/inmunología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositoles/inmunología
11.
Autophagy ; 2(3): 175-8, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16874111

RESUMEN

Autophagy is a newly recognized innate and adaptive immunity defense against intracellular pathogens, in keeping with its role as a cytoplasmic maintenance pathway. Induction of autophagy by physiological, pharmacological or immunological means can eliminate intracellular Mycobacterium tuberculosis, providing one of the first examples of the immunological role of autophagy. Under normal circumstances, M. Tuberculosis survives in macrophages by inhibiting phagolysosome biogenesis. Induction of autophagy overcomes the mycobacterial phagosome maturation block, and delivers the tubercle bacilli to degradative compartments where they are eliminated.


Asunto(s)
Autofagia/fisiología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/inmunología , Citocinas/fisiología , GTP Fosfohidrolasas/fisiología , Humanos , Interferón gamma/fisiología , Lípidos/fisiología , Macrófagos/microbiología , Viabilidad Microbiana , Modelos Biológicos , Mycobacterium tuberculosis/inmunología , Fagocitosis/fisiología , Fagosomas/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Células Th2/metabolismo , Células Th2/fisiología
12.
Cell Microbiol ; 8(5): 719-27, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16611222

RESUMEN

A marquee feature of the powerful human pathogen Mycobacterium tuberculosis is its macrophage parasitism. The intracellular survival of this microorganism rests upon its ability to arrest phagolysosome biogenesis, avoid direct cidal mechanisms in macrophages, and block efficient antigen processing and presentation. Mycobacteria prevent Rab conversion on their phagosomes and elaborate glycolipid and protein trafficking toxins that interfere with Rab effectors and regulation of specific organellar biogenesis in mammalian cells. One of the major Rab effectors affected in this process is the type III phosphatidylinositol 3-kinase hVPS34 and its enzymatic product phosphatidylinositol 3-phosphate (PI3P), a regulatory lipid earmarking organellar membranes for specific trafficking events. PI3P is also critical for the process of autophagy, recently recognized as an effector of innate and adaptive immunity. Induction of autophagy by physiological, pharmacological or immunological signals, including the major antituberculosis Th1 cytokine IFN-gamma and its downstream effector p47 GTPase LRG-47, can overcome mycobacterial phagosome maturation block and inhibit intracellular M. tuberculosis survival. This review summarizes the findings centred around the PI3P-nexus where the mycobacterial phagosome maturation block and execution stages of autophagy intersect.


Asunto(s)
Autofagia/fisiología , Mycobacterium tuberculosis/fisiología , Fagosomas/fisiología , Tuberculosis Pulmonar/inmunología , Animales , Proteínas de Unión al GTP/metabolismo , Glicosilación , Humanos , Inmunidad Innata , Interferón gamma/metabolismo , Metabolismo de los Lípidos/fisiología , Macrófagos/inmunología , Macrófagos/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Unión al GTP rab/metabolismo
13.
J Bacteriol ; 188(7): 2674-80, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16547055

RESUMEN

The majority of slow-growing mycobacteria have a functional oxyR, the central regulator of the bacterial oxidative stress response. In contrast, this gene has been inactivated during the evolution of Mycobacterium tuberculosis. Here we inactivated the oxyR gene in Mycobacterium marinum, an organism used to model M. tuberculosis pathogenesis. Inactivation of oxyR abrogated induction of ahpC, a gene encoding alkylhydroperoxide reductase, normally activated upon peroxide challenge. The absence of oxyR also resulted in increased sensitivity to the front-line antituberculosis drug isoniazid. Inactivation of oxyR in M. marinum did not affect either virulence in a fish infection model or survival in human macrophages. Our findings demonstrate, at the genetic and molecular levels, a direct role for OxyR in ahpC regulation in response to oxidative stress. Our study also indicates that oxyR is not critical for virulence in M. marinum. However, oxyR inactivation confers increased sensitivity to isonicotinic acid hydrazide, suggesting that the natural loss of oxyR in the tubercle bacillus contributes to the unusually high sensitivity of M. tuberculosis to isoniazid.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mycobacterium marinum/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Antituberculosos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana , Enfermedades de los Peces/microbiología , Eliminación de Gen , Carpa Dorada , Isoniazida/farmacología , Mycobacterium marinum/efectos de los fármacos , Mycobacterium marinum/genética , Estrés Oxidativo , Peróxidos
14.
Cell ; 119(6): 753-66, 2004 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-15607973

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen persisting within phagosomes through interference with phagolysosome biogenesis. Here we show that stimulation of autophagic pathways in macrophages causes mycobacterial phagosomes to mature into phagolysosomes. Physiological induction of autophagy or its pharmacological stimulation by rapamycin resulted in mycobacterial phagosome colocalization with the autophagy effector LC3, an elongation factor in autophagosome formation. Autophagy stimulation increased phagosomal colocalization with Beclin-1, a subunit of the phosphatidylinositol 3-kinase hVPS34, necessary for autophagy and a target for mycobacterial phagosome maturation arrest. Induction of autophagy suppressed intracellular survival of mycobacteria. IFN-gamma induced autophagy in macrophages, and so did transfection with LRG-47, an effector of IFN-gamma required for antimycobacterial action. These findings demonstrate that autophagic pathways can overcome the trafficking block imposed by M. tuberculosis. Autophagy, which is a hormonally, developmentally, and, as shown here, immunologically regulated process, represents an underappreciated innate defense mechanism for control of intracellular pathogens.


Asunto(s)
Autofagia/inmunología , Proteínas de Unión al GTP/metabolismo , Interferón gamma/farmacología , Macrófagos/inmunología , Fagosomas/inmunología , Animales , Proteínas Reguladoras de la Apoptosis , Autofagia/efectos de los fármacos , Beclina-1 , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/ultraestructura , Células Cultivadas , Lisosomas/inmunología , Lisosomas/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fagosomas/microbiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/metabolismo , Sirolimus/farmacología
15.
Cell Microbiol ; 6(11): 999-1009, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15469429

RESUMEN

Inhibition of phagolysosome biogenesis in infected macrophages is a classical pathogenesis determinant of Mycobacterium tuberculosis. In this review we primarily cover the cellular mechanisms of M. tuberculosis phagosome maturation arrest. A detailed picture is beginning to emerge, involving regulators of membrane trafficking in mammalian cells and phagosomal interactions with endosomal organelles and the trans-Golgi network. We also present a hypothesis that overlaps may exist between the mycobacterial interference with the host cell membrane trafficking processes and the targeting of the late endosomal sorting machinery by HIV during viral budding in macrophages. We propose that interference with the endosomal sorting machinery contributes to the synergism between the two significant human diseases--AIDS and tuberculosis.


Asunto(s)
Membrana Celular/metabolismo , Endosomas/metabolismo , VIH-1/patogenicidad , Mycobacterium tuberculosis/patogenicidad , Regulación de la Expresión Génica , Humanos , Macrófagos/microbiología , Macrófagos/ultraestructura , Macrófagos/virología , Fagocitosis
16.
J Bacteriol ; 186(16): 5427-31, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15292144

RESUMEN

Isoniazid (INH), a front-line antituberculosis agent, is activated by mycobacterial catalase-peroxidase KatG, converting INH into bactericidal reactive species. Here we investigated the requirements and the pathway of nitric oxide (NO*) generation during oxidative activation of INH by Mycobacterium tuberculosis KatG in vitro. We also provide in vivo evidence that INH-derived NO* can inhibit key mycobacterial respiratory enzymes, which may contribute to the overall antimycobacterial action of INH.


Asunto(s)
Proteínas Bacterianas , Catalasa , Isoniazida/metabolismo , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Aconitato Hidratasa/metabolismo , Antituberculosos/metabolismo , Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Complejo IV de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Peróxido de Hidrógeno/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Detección de Spin , Superóxidos/metabolismo
17.
Antimicrob Agents Chemother ; 48(8): 3006-9, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15273113

RESUMEN

Isonicotinic acid hydrazide (INH) is a frontline antituberculosis agent. Once taken up by Mycobacterium tuberculosis, INH requires activation by the catalase-peroxidase KatG, converting INH from its prodrug form into a range of bactericidal reactive species. Here we used 15N-labeled INH together with electron paramagnetic resonance spin trapping techniques to demonstrate that nitric oxide (NO*) is generated from oxidation at the hydrazide nitrogens during the activation of INH by M. tuberculosis KatG. We also observed that a specific scavenger of NO* provided protection against the antimycobacterial activity of INH in bacterial culture. No significant increases in mycobacterial protein nitration were detected, suggesting that NOdot; and not peroxynitrite, a nitrating metabolite of NO*, is involved in antimycobacterial action. In conclusion, INH-derived NO* has biological activity, which directly contributes to the antimycobacterial action of INH.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxidorreductasas/fisiología , Tirosina/análogos & derivados , Antituberculosos/metabolismo , Biotransformación , Catalasa/metabolismo , Depuradores de Radicales Libres/farmacología , Isoniazida/metabolismo , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Peroxidasa/metabolismo , Ácido Peroxinitroso/metabolismo , Profármacos/metabolismo , Profármacos/farmacología , Detección de Spin , Tirosina/metabolismo
18.
Infect Immun ; 72(5): 2872-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15102799

RESUMEN

Inducible nitric oxide synthase (iNOS) is a cytoplasmic protein responsible for the generation of nitric oxide (NO. ) in macrophages. In this work, we hypothesized that the intracellular localization of iNOS is significant for effective delivery of NO. to phagosomes containing ingested microorganisms. Using immunofluorescence microscopy and Western blot analysis, iNOS was shown to localize in the vicinity of phagosomes containing latex beads in stimulated macrophages. iNOS also localized to phagosomes containing Escherichia coli. The colocalization of iNOS with ingested latex beads was an actin-dependent process, since treatment with the actin microfilament disrupter cytochalasin D prevented iNOS recruitment to latex bead phagosomes. In contrast to E. coli and inert particle phagosomes, mycobacterial phagosomes did not colocalize with iNOS. This study demonstrates that (i). iNOS can be recruited to phagosomes; (ii). this recruitment is dependent on a functional actin cytoskeleton; (iii). certain microorganisms have the ability to prevent or reduce colocalization with iNOS; and (iv). spatial exclusion of iNOS may play a role in Mycobacterium tuberculosis pathogenesis.


Asunto(s)
Macrófagos/enzimología , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico Sintasa/metabolismo , Fagosomas/enzimología , Fagosomas/microbiología , Actinas/metabolismo , Animales , Línea Celular , Citoesqueleto/metabolismo , Técnicas In Vitro , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mycobacterium bovis/patogenicidad , Óxido Nítrico Sintasa/deficiencia , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa de Tipo II
19.
Curr Opin Microbiol ; 7(1): 71-7, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15036144

RESUMEN

Mycobacterium tuberculosis persistence in human populations relies on its ability to inhibit phagosomal maturation. M. tuberculosis resides in a pathogen-friendly phagosome escaping lysosomal bactericidal mechanisms and efficient antigen presentation in the host phagocytic cell. M. tuberculosis phagosome maturation arrest includes the action of mycobacterial lipid products, which mimic mammalian phosphatidylinositols, targeting host cell membrane trafficking processes. These products interfere with membrane trafficking and organelle biogenesis processes initiated by Ca(2+) fluxes, and ending with host cell Rab GTP-binding proteins and their effectors. The block includes phosphatidylinositol 3-kinase and membrane tethering molecules that prepare phagosomes for fusion with other organelles. Understanding these processes could provide new targets for pharmacological intervention in tuberculosis.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Fagocitosis/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/microbiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA