Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Parasitol ; 204: 107718, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31201779

RESUMEN

The aim of the current work was to evaluate a potential pharmacokinetic interaction between the flukicide triclabendazole (TCBZ) and the broad-spectrum benzimidazole (BZD) anthelmintic oxfendazole (OFZ) in sheep. To this end, both an in vitro assay in microsomal fractions and an in vivo trial in lambs parasitized with Haemonchus contortus resistant to OFZ and its reduced derivative fenbendazole (FBZ) were carried out. Sheep microsomal fractions were incubated together with OFZ, FBZ, TCBZ, or a combination of either FBZ and TCBZ or OFZ and TCBZ. OFZ production was significantly diminished upon coincubation of FBZ and TCBZ, whereas neither FBZ nor OFZ affected the S-oxidation of TCBZ towards its sulfoxide and sulfone metabolites. For the in vivo trial, lambs were treated with OFZ (Vermox® oral drench at a single dose of 5 mg/kg PO), TCBZ (Fasinex® oral drench at a single dose of 12 mg/kg PO) or both compounds at a single dose of 5 (Vermox®) and 12 mg/kg (Fasinex®) PO. Blood samples were taken to quantify drug and metabolite concentrations, and pharmacokinetic parameters were calculated by means of non-compartmental analysis. Results showed that the pharmacokinetic parameters of active molecules and metabolites were not significantly altered upon coadministration. The sole exception was the increase in the mean residence time (MRT) of OFZ and FBZ sulfone upon coadministration, with no significant changes in the remaining pharmacokinetic parameters. This research is a further contribution to the study of metabolic drug-drug interactions that may affect anthelmintic efficacies in ruminants.


Asunto(s)
Antihelmínticos/farmacocinética , Bencimidazoles/farmacocinética , Triclabendazol/farmacocinética , Animales , Antihelmínticos/metabolismo , Área Bajo la Curva , Bencimidazoles/metabolismo , Biotransformación , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Fenbendazol/metabolismo , Hígado/metabolismo , Masculino , Microsomas Hepáticos/metabolismo , Oxigenasas/metabolismo , Ovinos , Triclabendazol/metabolismo
2.
J Vet Pharmacol Ther ; 41(3): 476-484, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29465161

RESUMEN

Parasitic diseases have a significant impact on livestock production. Nematodicidal drugs, such as fenbendazole (FBZ) or its oxidized metabolite oxfendazole (OFZ), can be used along with the trematodicidal triclabendazole (TCBZ), to broaden the spectrum of anthelmintic activity. However, co-exposure to these compounds could lead to drug-drug (D-D) interactions and eventually alter the clinical profile of each active principle. The aim of this study was to assess the presence of such interactions by means of two in vitro models, namely bovine liver microsomal fractions and bovine precision-cut liver slices (PCLSs). To this end, an in vitro assessment involving incubation of FBZ and TCBZ or a combination of FBZ and TCBZ was carried out. Results with microsomal fractions showed a 78.4% reduction (p = .002) in the rate of OFZ production upon co-incubation, whereas the sulfoxide metabolite of TCBZ (TCBZSO) exhibited a decreasing tendency. With PCLS, OFZ accumulation in the incubation medium increased 1.8-fold upon co-incubation, whereas TCBZSO accumulation decreased by 28%. The accumulation of FBZ and OFZ in the liver tissue increased upon 2-hr co-incubation, from 2.1 ± 1.5 to 18.2 ± 6.1 (p = .0009) and from 0.4 ± 0.1 to 1.3 ± 0.3 nmol (p = .0005), respectively. These results confirm the presence of D-D interactions between FBZ and TCBZ. Further studies are needed to determine the extent of involvement of drug-metabolizing enzymes and membrane transporters in interactions between compounds largely used in livestock production systems.


Asunto(s)
Bencimidazoles/farmacocinética , Bovinos , Fenbendazol/farmacocinética , Hígado/metabolismo , Microsomas Hepáticos/metabolismo , Albendazol/farmacocinética , Animales , Antihelmínticos/farmacocinética , Interacciones Farmacológicas , Manejo de Especímenes , Triclabendazol
3.
J Vet Pharmacol Ther ; 40(5): 493-499, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28092103

RESUMEN

Flubendazole (FLBZ) is a broad-spectrum benzimidazole anthelmintic used in pigs, poultry, and humans. It has been proposed as a candidate for development for use in elimination programmes for lymphatic filariasis and onchocerciasis in humans. Moreover, FLBZ has shown promise in cancer chemotherapy, particularly for neuroblastoma. This work investigated the hepatic carbonyl-reducing pathway of FLBZ in different species, including humans. Microsomal and cytosolic fractions were obtained from sheep, cattle, pig, hen, rat, and human liver. Both subcellular fractions of each species converted FLBZ into a reduced metabolite (red-FLBZ). The rate of microsomal red-FLBZ production was highest in sheep (1.92 ± 0.13 nmol/min.mg) and lowest in pigs (0.04 ± 0.02 nmol/min.mg); cytosolic red-FLBZ production ranged from 0.02 ± 0.01 (pig) to 1.86 ± 0.61 nmol/min.mg (sheep). Only subcellular fractions from sheep liver oxidized red-FLBZ to FLBZ in a NADP+ -dependent oxidative reaction. Liver microsomes from both pigs and humans transformed FLBZ to red-FLBZ and a hydrolyzed metabolite. Very significant differences in the pattern of FLBZ metabolism were observed among the tested species and humans. These results reinforce the need for caution in extrapolating data on metabolism, efficacy, and safety of drugs derived from studies performed in different species.


Asunto(s)
Antihelmínticos/metabolismo , Biotransformación/fisiología , Mebendazol/análogos & derivados , Microsomas Hepáticos/metabolismo , Animales , Bovinos , Pollos , Femenino , Mebendazol/metabolismo , Ratas , Ovinos , Especificidad de la Especie , Porcinos
4.
J Vet Pharmacol Ther ; 35(4): 319-28, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21906085

RESUMEN

The effects of repeated administrations of dexamethasone (DEX) (3 mg/kg/day by i.m. route for 7 days) on the gene expression profile of a cytochrome P450 (CYP) 3A28-like isoenzyme, on the expression of a CYP3A-immunoreactive protein and on CYP3A-dependent metabolic activities in sheep liver and small intestinal mucosa were evaluated in the current work. CYP 3A-dependent metabolic activities (erythromycin and triacetyl-oleandomycin N-demethylations) were assessed in microsomal fractions. The mRNA expression of CYP3A28-like, glucocorticoid receptor, constitutive androstane receptor, pregnane X receptor and retinoic X receptor alpha (RXRα) was determined by quantitative real-time PCR. The expression of a CYP3A-immunoreactive protein was measured by Western blot analyses. In the liver, DEX treatment increased CYP3A28-like mRNA levels (2.67-fold, P<0.01) and CYP3A apoprotein expression (1.34-fold, P<0.05) and stimulated CYP3A-dependent metabolism. High and significant correlation coefficients between CYP3A-dependent activities and CYP3A28-like gene (r=0.835-0.856, P<0.01) or protein (r=0.728-0.855, P<0.05) expression profiles were observed. Among the transcriptional factors, DEX only stimulated (2.1-fold, P<0.01) the mRNA expression of RXRα. In sheep small intestine, DEX caused a slight increment (34.6%, P<0.05) in erythromycin N-demethylase activity in the jejunal mucosa and a significant enhancement (P<0.05) of CYP3A apoprotein level in the duodenal mucosa.


Asunto(s)
Citocromo P-450 CYP3A/metabolismo , Dexametasona/farmacología , Mucosa Intestinal/metabolismo , Hígado/enzimología , Ovinos/metabolismo , Animales , Biomarcadores , Western Blotting , Citocromo P-450 CYP3A/genética , Electroforesis en Gel de Poliacrilamida/veterinaria , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Masculino , ARN/genética , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
5.
Leg Med (Tokyo) ; 13(6): 289-92, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21982877

RESUMEN

South American camelids comprise the wild species guanaco and vicuña and their respective domestic relatives llama and alpaca. The aim of the present study was to determine by DNA analysis to which of these species belong a herd of camelids confiscated from a llama breeder but alleged to be alpacas by the prosecution, and to evaluate the usefulness of mitochondrial and autosomal DNA markers to solve judicial cases involving camelid taxa. Cytochrome b and cytochrome oxidase I mitochondrial genes and 7 STR were analyzed in 25 confiscated samples. Mitochondrial results were inconclusive because 18 of the sequestered samples presented haplotypes that corresponded to the guanaco haplogroup and the remaining seven belonged to a vicuña linage. Microsatellite data of casework samples and llama reference samples revealed different genetic profiles by the presence of private alleles at two microsatellites suggesting that the confiscated animals could be alpaca, or at least alpaca hybrids instead of pure llama.


Asunto(s)
Camélidos del Nuevo Mundo/genética , Especificidad de la Especie , Animales , Argentina , ADN Mitocondrial/sangre , Bases de Datos Genéticas , Fraude/legislación & jurisprudencia , Marcadores Genéticos , Técnicas de Genotipaje , América del Sur
6.
Anim Genet ; 36(4): 316-21, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16026342

RESUMEN

Genotype data from 14 microsatellite markers were used to assess the genetic diversity and differentiation of four guanaco populations from Argentine Patagonia. These animals were recently captured in the wild and maintained in semi-captivity for fibre production. Considerable genetic diversity in these populations was suggested by the finding of a total of 162 alleles, an average mean number of alleles per locus ranging from 6.50 to 8.19, and H(e) values ranging from 0.66 to 0.74. Assessment of population differentiation showed moderate but significant values of F(ST)=0.071 (P=0.000) and R(ST)=0.083 (P=0.000). An amova test showed that the genetic variation among populations was 5.6% while within populations it was 94.4%. A number of 6.6 migrants per generation may support these results. Unambiguous individual assignment to original populations was obtained for the Pilcaniyeu, Las Heras and La Esperanza populations. The erroneous assignment of 18.75% Rio Mayo individuals to the Las Heras population can be explained by the low genetic differentiation found between these two populations. Thirty-nine of 56 loci per population combinations were in Hardy--Weinberg disequilibrium because of guanaco heterozygote deficiency, which may be explained by population subdivision. The high level of genetic diversity of the guanacos analysed here indicates that the Patagonian guanaco constitutes an important genetic resource for conservation or economic utilization programmes.


Asunto(s)
Camélidos del Nuevo Mundo/genética , Variación Genética , Genética de Población , Análisis de Varianza , Animales , Argentina , Cartilla de ADN , Frecuencia de los Genes , Genotipo , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA