Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Nutrients ; 15(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004115

RESUMEN

This research aimed to determine the effects of Gynostemma pentaphyllum (G. pentaphyllum) on exercise performance, AMP-activated protein kinase (AMPK), and mitochondrial signaling in human muscle. This randomized double-blind placebo control crossover study provided placebo or 450 mg of G. pentaphyllum dried leaf extract equivalent to 2.25 g of dry leaf per day for four weeks to 16 healthy untrained young males, separated by four weeks wash-out. Following 4-week supplementation with G. pentaphyllum, participants had significantly lower leptin and blood glucose levels and improved time trial performance over 20 km, which corresponded with a higher muscle oxygen flux compared to placebo. Muscle AMPK Thr172 phosphorylation significantly increased after 60 min exercise following G. pentaphyllum supplementation. AMPK Thr172 phosphorylation levels relative to total AMPK increased earlier following exercise with G. pentaphyllum compared to placebo. Total ACC-α was lower following G. pentaphyllum supplementation compared to placebo. While further research is warranted, G. pentaphyllum supplementation improved exercise performance in healthy untrained males, which corresponded with improved mitochondrial respiration, altered AMPK and ACC, and decreased plasma leptin and glucose levels.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Leptina , Humanos , Masculino , Proteínas Quinasas Activadas por AMP/metabolismo , Estudios Cruzados , Gynostemma , Extractos Vegetales/farmacología
2.
Cancer Med ; 12(18): 19188-19202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37702114

RESUMEN

BACKGROUND: Cereal-derived polyphenols have demonstrated protective mechanisms in colorectal cancer (CRC) models; however, confirmation in human studies is lacking. Therefore, this study examined the association between cereal polyphenol intakes and CRC risk in the Melbourne Collaborative Cohort Study (MCCS), a prospective cohort study in Melbourne, Australia that recruited participants between 1990 and 1994 to investigate diet-disease relationships. METHODS: Using food frequency questionnaire diet data matched to polyphenol data, dietary intakes of alkylresorcinols, phenolic acids, lignans, and total polyphenols from cereals were estimated. Hazard ratios (HRs) and 95% confidence intervals for CRC risk were estimated for quintiles of intake with the lowest quintile as the comparison category, using multivariable adjusted Cox proportional hazards models with age as the time axis adjusted for sex, socio-economic status, alcohol consumption, fibre intake, country of birth, total energy intake, physical activity and smoking status. RESULTS: From 35,245 eligible adults, mean (SD) age 54.7 (8.6) years, mostly female (61%) and Australian-born (69%), there were 1394 incident cases of CRC (946 colon cancers and 448 rectal cancers). Results for total cereal polyphenol intake showed reduced HRs in Q2 (HR: 0.80; 95% CI, 0.68-0.95) and Q4 (HR: 0.75; 95% CI, 0.62-0.90), and similar for phenolic acids. Alkylresorcinol intake showed reduced HR in Q3 (HR: 0.80; 95% CI, 0.67-0.95) and Q4 (HR: 0.79; 95% CI, 0.66-0.95). CONCLUSIONS: Overall, the present study showed little evidence of association between intakes of cereal polyphenols and CRC risk. Future investigations may be useful to understand associations between cereal-derived polyphenols and additional cancers in different populations.

3.
Sci Rep ; 13(1): 8556, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37237174

RESUMEN

Cereal foods are consumed globally and are important sources of polyphenols with potential health benefits, yet dietary intakes are unclear. We aimed to calculate the dietary intakes of polyphenols from cereal foods in the Melbourne Collaborative Cohort Study (MCCS), and describe intakes by demographic and lifestyle factors. We estimated intakes of alkylresorcinols, lignans and phenolic acids in n = 39,892 eligible MCCS participants, using baseline dietary data (1990-1994) from a 121-item FFQ containing 17 cereal foods, matched to a polyphenol database developed from published literature and Phenol-Explorer Database. Intakes were estimated within groups according to lifestyle and demographic factors. The median (25th-75th percentile) intake of total polyphenols from cereal foods was 86.9 mg/day (51.4-155.8). The most consumed compounds were phenolic acids, with a median intake of 67.1 mg (39.5-118.8), followed by alkylresorcinols of 19.7 mg (10.8-34.6). Lignans made the smallest contribution of 0.50 mg (0.13-0.87). Higher polyphenol intakes were associated with higher relative socio-economic advantage and prudent lifestyles, including lower body mass index (BMI), non-smoking and higher physical activity scores. The findings based on polyphenol data specifically matched to the FFQ provide new information on intakes of cereal polyphenols, and how they might vary according to lifestyle and demographic factors.


Asunto(s)
Lignanos , Polifenoles , Humanos , Polifenoles/análisis , Grano Comestible/química , Estudios de Cohortes , Flavonoides , Dieta , Ingestión de Alimentos , Estilo de Vida , Demografía
4.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37175785

RESUMEN

Colorectal cancer (CRC) accounts for 10% of all cancer diagnoses and cancer-related deaths worldwide. Over the past two decades, several studies have demonstrated the clinical benefits of probiotic supplementation and some studies have shown that certain probiotics can modulate immunity and strengthen gut microbiota diversity. This study aims to assess the impact of the Propionibacterium freudenreichii (PF) probiotic against CRC induced by azoxymethane (AOM), and to investigate its effects on gut microbiota diversity in rats, as well as to evaluate the anti-proliferative activities of PF in HCT116 CRC cells. This experiment was performed using four groups of SD rats: normal control, AOM group, PF group (1 × 109 CFU/mL), and standard drug control (5-fluorouracil, 35 mg/kg). Methylene blue staining of colon tissues showed that the administration of PF significantly reduced the formation of colonic aberrant crypt foci (ACF) compared to the AOM control group. In addition, treated rats had lower levels of malondialdehyde in their colon tissue homogenates, indicating that lipid peroxidation was suppressed by PF supplementation. Furthermore, 16S rRNA gene analysis revealed that probiotic treatment enhanced the diversity of gut microbiota in rats. In vitro study showed that the viability of HCT116 cells was inhibited by the probiotic cell-free supernatant with an IC50 value of 13.3 ± 0.133. In conclusion, these results reveal that consuming PF as probiotic supplements modulates gut microbiota, inhibits the carcinogenic effects of AOM, and exerts anti-proliferative activity against CRC cells. Further studies are required to elucidate the role of PF on the immune response during the development and growth of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Propionibacterium freudenreichii , Ratas , Animales , ARN Ribosómico 16S/genética , Ratas Sprague-Dawley , Azoximetano/efectos adversos , Neoplasias Colorrectales/microbiología
5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108770

RESUMEN

Diet-induced obesity (DIO) is a contributor to co-morbidities, resulting in alterations in hormones, lipids, and low-grade inflammation, with the cannabinoid type 2 receptor (CB2) contributing to the inflammatory response. The effects of modulating CB2 with pharmacological treatments on inflammation and adaptations to the obese state are not known. Therefore, we aimed to investigate the molecular mechanisms in adipose tissue of CB2 agonism and CB2 antagonism treatment in a DIO model. Male Sprague Dawley rats were placed on a high-fat diet (HFD) (21% fat) for 9 weeks, then received daily intraperitoneal injections with a vehicle, AM630 (0.3 mg/kg), or AM1241 (3 mg/kg), for a further 6 weeks. AM630 or AM1241 treatment in DIO rats did not alter their body weight, food intake, or liver weight, and it had no effect on their numerous circulating cytokines or peri-renal fat pad mass. AM1241 decreased heart weight and BAT weight; both treatments (AM630 or AM1241) decreased plasma leptin levels, while AM630 also decreased plasma ghrelin and GLP-1 levels. Both treatments decreased Adrb3 and TNF-α mRNA levels in eWAT and TNF-α levels in pWAT. AM630 treatment also decreased the mRNA levels of Cnr2, leptin, and Slc2a4 in eWAT. In BAT, both treatments decreased leptin, UCP1, and Slc2a4 mRNA levels, with AM1241 also decreasing Adrb3, IL1ß, and PRDM16 mRNA levels, and AM630 increasing IL6 mRNA levels. In DIO, CB2 agonist and CB2 antagonist treatment reduces circulating leptin in the absence of weight loss and modulates the mRNA responsible for thermogenesis.


Asunto(s)
Cannabinoides , Leptina , Ratas , Masculino , Animales , Factor de Necrosis Tumoral alfa/efectos adversos , ARN Mensajero/genética , Ratas Sprague-Dawley , Obesidad/tratamiento farmacológico , Obesidad/etiología , Tejido Adiposo , Cannabinoides/farmacología , Receptores de Cannabinoides , Dieta Alta en Grasa/efectos adversos , Inflamación/inducido químicamente , Termogénesis , Receptor Cannabinoide CB2/genética
6.
Life Sci ; 318: 121466, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773693

RESUMEN

AIMS: Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS: Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS: Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE: The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.


Asunto(s)
Enfermedades Renales , Nefrosis , Insuficiencia Renal , Humanos , Antioxidantes/farmacología , Riñón/metabolismo , Estrés Oxidativo , Enfermedades Renales/metabolismo , Insuficiencia Renal/metabolismo , Nefrosis/metabolismo
7.
Pharmaceuticals (Basel) ; 16(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678606

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent form of liver disease. Orthosiphon aristatus (Blume) Miq, a traditional plant in South Asia, has previously been shown to attenuate obesity and hyperglycaemic conditions. Eight weeks of feeding C57BL/6 mice with the standardized O. aristatus extract (400 mg/kg) inhibited the progression of NAFLD. Liver enzymes including alanine aminotransferase and aspartate transaminase were significantly reduced in treated mice by 74.2% ± 7.69 and 52.8% ± 7.83, respectively. Furthermore, the treated mice showed a reduction in serum levels of glucose (50% ± 5.71), insulin (70.2% ± 12.09), total cholesterol (27.5% ± 15.93), triglycerides (63.2% ± 16.5), low-density lipoprotein (62.5% ± 4.93) and atherogenic risk index relative to the negative control. Histologically, O. aristatus reversed hepatic fat accumulation and reduced NAFLD severity. Notably, our results showed the antioxidant activity of O. aristatus via increased superoxide dismutase activity and a reduction of hepatic malondialdehyde levels. In addition, the levels of serum pro-inflammatory mediators (IL-6 and TNFα) decreased, indicating anti-inflammatory activity. The aqueous, hydroethanolic and ethanolic fractions of O. aristatus extract significantly reduced intracellular fat accumulation in HepG2 cells that were treated with palmitic-oleic acid. Together, these findings suggest that antioxidant activities are the primary mechanism of action of O. aristatus underlying the anti-NAFLD effects.

8.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232524

RESUMEN

Methamphetamine (METH) is a highly addictive drug abused by millions of users worldwide, thus becoming a global health concern with limited management options. The inefficiency of existing treatment methods has driven research into understanding the mechanisms underlying METH-induced disorders and finding effective treatments. This study aims to understand the complex interactions of the gastrointestinal-immune-nervous systems following an acute METH dose administration as one of the potential underlying molecular mechanisms concentrating on the impact of METH abuse on gut permeability. Findings showed a decreased expression of tight junction proteins ZO-1 and EpCAm in intestinal tissue and the presence of FABP-1 in sera of METH treated mice suggests intestinal wall disruption. The increased presence of CD45+ immune cells in the intestinal wall further confirms gut wall inflammation/disruption. In the brain, the expression of inflammatory markers Ccl2, Cxcl1, IL-1ß, TMEM119, and the presence of albumin were higher in METH mice compared to shams, suggesting METH-induced blood-brain barrier disruption. In the spleen, cellular and gene changes are also noted. In addition, mice treated with an acute dose of METH showed anxious behavior in dark and light, open field, and elevated maze tests compared to sham controls. The findings on METH-induced inflammation and anxiety may provide opportunities to develop effective treatments for METH addiction in the future.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Estimulantes del Sistema Nervioso Central , Metanfetamina , Albúminas/metabolismo , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Ansiedad , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Molécula de Adhesión Celular Epitelial/metabolismo , Inflamación/metabolismo , Metanfetamina/metabolismo , Metanfetamina/toxicidad , Ratones
9.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36232744

RESUMEN

Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with the global CB1 antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a "browning" of white adipose tissue (WAT) defined by UCP1 expression levels. Male Sprague Dawley rats consumed an HFD (21% fat) for 9 weeks before receiving daily intraperitoneal injections with vehicle or AM251 (3 mg/kg) for 6 weeks. mRNA expression of genes involved in metabolic functions were measured in skeletal muscle and adipose tissue, and blood was harvested for the measurement of hormones and cytokines. Muscle citrate synthase activity was also measured. AM251 treatment decreased fat pad weight (epididymal, peri-renal, brown), and plasma levels of leptin, glucagon, ghrelin, and GLP-1, and increased PAI-1 along with a range of pro-inflammatory and anti-inflammatory cytokines; however, AM251 did not alter plasma adiponectin levels, skeletal muscle citrate synthase activity or mRNA expression of the genes measured in muscle. AM251 treatment had no effect on white fat UCP1 expression levels. AM251 decreased fat pad mass, altered plasma hormone levels, but did not induce browning of WAT defined by UCP1 mRNA levels or alter gene expression in muscle treated acutely with adiponectin, demonstrating the complexity of the endocannabinoid system and metabolism. The CB1 ligand AM251 increased systemic inflammation suggesting limitations on its use in metabolic disorders.


Asunto(s)
Ghrelina , Leptina , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Animales , Citrato (si)-Sintasa/metabolismo , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Endocannabinoides/metabolismo , Ghrelina/metabolismo , Glucagón/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Inflamación/metabolismo , Leptina/metabolismo , Ligandos , Masculino , Obesidad/etiología , Obesidad/metabolismo , Piperidinas , Inhibidor 1 de Activador Plasminogénico/metabolismo , Pirazoles , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Pérdida de Peso
10.
PLoS One ; 17(9): e0270306, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36112580

RESUMEN

Obesity is a leading global health problem contributing to various chronic diseases, including type II diabetes mellitus (T2DM). The aim of this study was to investigate whether blueberries, yoghurt, and their respective bioactive components, Cyanidin-3-O-ß-glucoside (C3G) and peptides alone or in combinations, alter the expression of genes related to glucose metabolism in skeletal muscles from diet-induced obese mice. In extensor digitorum longus (EDL), yoghurt up-regulated the expression of activation of 5'adenosine monophosphate-activated protein kinase (AMPK), insulin receptor substrate-1 (IRS-1), phosphatidylinositol-3 kinase (PI3K) and glucose transporter 4 (GLUT4), and down-regulated the expression of angiotensin II receptor type 1 (AGTR-1). The combination of blueberries and yoghurt down-regulated the mRNA expression of AGTR-1 and Forkhead box protein O1 (FoxO1) in the EDL. Whereas the combination of C3G and peptides down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression in the EDL. In the soleus, blueberries and yoghurt alone, and their combination down-regulated AGTR-1 and up-regulated GLUT4 mRNA expression. In summary blueberries and yoghurt, regulated multiple genes associated with glucose metabolism in skeletal muscles, and therefore may play a role in the management and prevention of T2DM.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Diabetes Mellitus Tipo 2 , Glucosa , Obesidad , Yogur , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Animales , Antocianinas/metabolismo , Antocianinas/farmacología , Arándanos Azules (Planta)/química , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Proteína Forkhead Box O1/metabolismo , Expresión Génica , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Ratones , Ratones Obesos , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , ARN Mensajero/metabolismo , Receptores de Angiotensina/metabolismo
11.
Heliyon ; 8(9): e10608, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36158077

RESUMEN

Cisplatin spearheads the anticancer chemotherapeutics in present-day use although acute toxicity is its primary impediment factor. Among a plethora of experimental medications, a drug as effective or surpassing the benefits of cisplatin has not been discovered yet. Although Oxaliplatin is considered more superior to cisplatin, the former has been better for colorectal cancer while cisplatin is widely used for treating gynaecological cancers. Carcinoma imposes a heavy toll on mortality rates worldwide despite the novel treatment strategies and detection methods that have been introduced; nanomedicine combined with precision medicine, immunotherapy, volume-regulated anion channels, and fluorodeoxyglucose-positron emission tomography. Millions of deaths occur annually from metastatic cancers which escape early detection and the concomitant diseases caused by highly toxic chemotherapy that causes organ damage. It continues due to insufficient knowledge of the debilitative mechanisms induced by cancer biology. To overcome chemoresistance and to attenuate the adverse effects of cisplatin therapy, both in vitro and in vivo models of cisplatin-treated cancers and a few multi-centred, multi-phasic, randomized clinical trials in pursuant with recent novel strategies have been tested. They include plant-based phytochemical compounds, de novo drug delivery systems, biochemical/immune pathways, 2D and 3D cell culture models using small molecule inhibitors and genetic/epigenetic mechanisms, that have contributed to further the understanding of cisplatin's role in modulating the tumour microenvironment. Cisplatin was beneficial in cancer therapy for modulating the putative cellular mechanisms; apoptosis, autophagy, cell cycle arrest and gene therapy of micro RNAs. Specific importance of drug influx, efflux, systemic circulatory toxicity, half-maximal inhibition, and the augmentation of host immunometabolism have been identified. This review offers a discourse on the recent anti-neoplastic treatment strategies to enhance cisplatin efficacy and to overcome chemoresistance, given its superiority among other tolerable chemotherapies.

12.
J Food Sci ; 87(9): 4188-4202, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35998111

RESUMEN

Breakfast cereals are popular grain foods and sources of polyphenols. Malting alters polyphenol content and activity; however, effects are varied. The total polyphenol content (TPC), radical scavenging activity (RSA), and polyphenol profile were analyzed in unmalted and malted grains (wheat, barley, and sorghum) and breakfast cereals (wheat, barley) by Folin Ciocalteu Reagent (FCR), % inhibition of the free radical 2,2-diphenyl-1-picryl-hydrazyl, and high performance liquid chromatography. Higher TPC was observed in all malted grains and breakfast cereals compared with unmalted samples (p < 0.05). Higher RSA was also observed in all malted samples compared to unmalted samples (p < 0.05) except for wheat grain to malted wheat grain. In this study, malting induced additional polyphenols and antioxidant activity in grains and cereal products. Malted grain breakfast cereals may be practical sources of polyphenol antioxidants. PRACTICAL APPLICATION: This study utilized malting in a unique way to investigate potential health benefits of polyphenols and antioxidant activity in grains (wheat, barley, and sorghum) and ready-to-eat breakfast cereals (wheat and barley). This study found that grains and breakfast cereals are important sources of antioxidant polyphenols, and these were significantly increased in malted varieties. Understanding this is important as grains and breakfast cereals are widely consumed staple foods. Consuming healthier grain products may be a practical strategy in reducing the risk of noncommunicable diseases such as colorectal cancer and type-2 diabetes, where wholegrain consumption may be important in prevention.


Asunto(s)
Antipsicóticos , Hordeum , Sorghum , Antioxidantes/análisis , Desayuno , Grano Comestible/química , Hordeum/química , Fenoles/análisis , Polifenoles/análisis , Sorghum/química , Triticum/química
13.
Biofactors ; 48(4): 813-856, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35719120

RESUMEN

The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.


Asunto(s)
Neoplasias , Tocotrienoles , Animales , Antiinflamatorios/uso terapéutico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Suplementos Dietéticos , Humanos , Neoplasias/tratamiento farmacológico , Tocotrienoles/farmacología , Tocotrienoles/uso terapéutico , Vitamina E
14.
Nutrients ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35631301

RESUMEN

Anthocyanins are mainly purple-coloured phenolic compounds of plant origin that as secondary metabolites are important in plant survival. Understanding their health benefits in humans requires sourcing these unstable compounds in sufficient quantities at a reasonable cost, which has led to improved methods of extraction. Dark-coloured fruits, cereals and vegetables are current sources of these compounds. The range of potential sustainable sources is much larger and includes non-commercialised native plants from around the world and agri-waste containing anthocyanins. In the last 5 years, there have been significant advances in developing the therapeutic potential of anthocyanins in chronic human diseases. Anthocyanins exert their beneficial effects through improvements in gut microbiota, oxidative stress and inflammation, and modulation of neuropeptides such as insulin-like growth factor-1. Their health benefits in humans include reduced cognitive decline; protection of organs such as the liver, as well as the cardiovascular system, gastrointestinal tract and kidneys; improvements in bone health and obesity; and regulation of glucose and lipid metabolism. This review summarises some of the sources of anthocyanins and their mechanisms and benefits in the treatment of chronic human diseases.


Asunto(s)
Antocianinas , Verduras , Antocianinas/química , Enfermedad Crónica , Grano Comestible/química , Frutas/química , Humanos , Verduras/química
15.
Viruses ; 14(5)2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35632821

RESUMEN

Lipids play a crucial role in the entry and egress of viruses, regardless of whether they are naked or enveloped. Recent evidence shows that lipid involvement in viral infection goes much further. During replication, many viruses rearrange internal lipid membranes to create niches where they replicate and assemble. Because of the close connection between lipids and inflammation, the derangement of lipid metabolism also results in the production of inflammatory stimuli. Due to its pivotal function in the viral life cycle, lipid metabolism has become an area of intense research to understand how viruses seize lipids and to design antiviral drugs targeting lipid pathways. Palmitoylethanolamide (PEA) is a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that also counteracts SARS-CoV-2 entry and its replication. Our work highlights for the first time the antiviral potency of PEA against SARS-CoV-2, exerting its activity by two different mechanisms. First, its binding to the SARS-CoV-2 S protein causes a drop in viral infection of ~70%. We show that this activity is specific for SARS-CoV-2, as it does not prevent infection by VSV or HSV-2, other enveloped viruses that use different glycoproteins and entry receptors to mediate their entry. Second, we show that in infected Huh-7 cells, treatment with PEA dismantles lipid droplets, preventing the usage of these vesicular bodies by SARS-CoV-2 as a source of energy and protection against innate cellular defenses. This is not surprising since PEA activates PPAR-α, a transcription factor that, once activated, generates a cascade of events that leads to the disruption of fatty acid droplets, thereby bringing about lipid droplet degradation through ß-oxidation. In conclusion, the present work demonstrates a novel mechanism of action for PEA as a direct and indirect antiviral agent against SARS-CoV-2. This evidence reinforces the notion that treatment with this compound might significantly impact the course of COVID-19. Indeed, considering that the protective effects of PEA in COVID-19 are the current objectives of two clinical trials (NCT04619706 and NCT04568876) and given the relative lack of toxicity of PEA in humans, further preclinical and clinical tests will be needed to fully consider PEA as a promising adjuvant therapy in the current COVID-19 pandemic or against emerging RNA viruses that share the same route of replication as coronaviruses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Amidas , Antivirales/farmacología , Antivirales/uso terapéutico , Etanolaminas , Humanos , Ácidos Palmíticos/farmacología , Pandemias , Pisum sativum , Receptores Activados del Proliferador del Peroxisoma , Glicoproteína de la Espiga del Coronavirus
16.
Biochim Biophys Acta Rev Cancer ; 1877(2): 188699, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35192881

RESUMEN

Colorectal cancer (CRC) is a malignancy in the gastro-intestinal (GI) tract which has very limited treatment options still, despite the vast amount of research undertaken. CRC was first discovered a century ago and is the third-highest cause of global cancer-related deaths. Once diagnosed as a T4 -stage carcinoma, the prognosis extends only up to two years at the best. Although resectable surgery remains the primary safeguard in combatting metastatic CRC, research had focussed on to various therapeutic and disease management strategies, such as stem cell - based therapies, CT, MRI, PET-CT scans, colonography, endoscopy and biologics. The struggle in developing an anti-cancer therapy may be due to its unresolved aetiology comprising of genetic abnormalities, and multiple risk factors in lifestyle, culture, and environment in the globally diverse, human populations. This review aims to summarize the prominent features of CRC which could encourage lifestyle changes and introduce novel clinically - relevant therapeutic strategies to improve its overall management.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/terapia , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones
17.
Artículo en Inglés | MEDLINE | ID: mdl-34574516

RESUMEN

The effect of the menstrual cycle on athlete performance, wellbeing and perceived exertion and fatigue is not well understood. Furthermore, it has not been investigated specifically in Australian Football athletes. This pilot study aimed to explore how naturally menstruating Australian Football athletes may be affected by menstrual cycle phase. The data collected from the routine monitoring of five naturally menstruating athletes (average menstrual cycle length of 28 ± 3 [SD] days) in one team (athlete age range 18-35 years) competing in the Women's Australian Football League during the 2019 season were retrospectively analysed to compare performance (countermovement jump parameters and adductor squeeze pressure), perceived exertion, perceived fatigue and wellbeing (perceived sleep quality, stress and soreness) outcomes between the follicular and luteal phases. Performance, perceived exertion, stress and soreness did not appear to be affected by menstrual cycle phase (p > 0.17). However, perceived fatigue appeared to be significantly greater (p = 0.042) and sleep quality worse (p = 0.005) in the luteal phase. This pilot study suggests further research focusing on the effect of menstrual cycle phase on subjective fatigue and wellbeing is warranted.


Asunto(s)
Deportes de Equipo , Adolescente , Adulto , Femenino , Humanos , Adulto Joven , Atletas , Australia/epidemiología , Ciclo Menstrual , Mialgia , Proyectos Piloto , Estudios Retrospectivos
19.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32824681

RESUMEN

O-1602 and O-1918 are atypical cannabinoid ligands for GPR55 and GPR18, which may be novel pharmaceuticals for the treatment of obesity by targeting energy homeostasis regulation in skeletal muscle. This study aimed to determine the effect of O-1602 or O-1918 on markers of oxidative capacity and fatty acid metabolism in the skeletal muscle. Diet-induced obese (DIO) male Sprague Dawley rats were administered a daily intraperitoneal injection of O-1602, O-1918 or vehicle for 6 weeks. C2C12 myotubes were treated with O-1602 or O-1918 and human primary myotubes were treated with O-1918. GPR18 mRNA was expressed in the skeletal muscle of DIO rats and was up-regulated in red gastrocnemius when compared with white gastrocnemius. O-1602 had no effect on mRNA expression on selected markers for oxidative capacity, fatty acid metabolism or adiponectin signalling in gastrocnemius from DIO rats or in C2C12 myotubes, while APPL2 mRNA was up-regulated in white gastrocnemius in DIO rats treated with O-1918. In C2C12 myotubes treated with O-1918, PGC1α, NFATc1 and PDK4 mRNA were up-regulated. There were no effects of O-1918 on mRNA expression in human primary myotubes derived from obese and obese T2DM individuals. In conclusion, O-1602 does not alter mRNA expression of key pathways important for skeletal muscle energy homeostasis in obesity. In contrast, O-1918 appears to alter markers of oxidative capacity and fatty acid metabolism in C2C12 myotubes only. GPR18 is expressed in DIO rat skeletal muscle and future work could focus on selectively modulating GPR18 in a tissue-specific manner, which may be beneficial for obesity-targeted therapies.


Asunto(s)
Anisoles/farmacología , Cannabidiol/análogos & derivados , Ciclohexanos/farmacología , Homeostasis , Músculo Esquelético/efectos de los fármacos , Obesidad/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Animales , Cannabidiol/farmacología , Línea Celular , Células Cultivadas , Ácidos Grasos/metabolismo , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
20.
Biomolecules ; 9(10)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581577

RESUMEN

Obesity prevalence continues to be a foremost health concern across the globe leading to the development of major health risk conditions like type II diabetes, hyperlipidemia, hypertension and even cancers. Because of the deprived drug-based management system, there is an urgent need for the development of new drugs aiming at satiety and appetite control targets. Among the reported satiety signaling targets, 5HT2C receptor plays a crucial role in decreasing appetite and has become a promising target for the development of anti-obesity drugs. Lorcaserin, a 5HT2C receptor agonist and the only drug available in the market, was designed based on the receptor mechanism of action. Due to limited drug options available and considering the adverse drug effects of Lorcaserin, the development of new drugs which are highly specific toward the 5HT2C target and with lesser side effects is essential. The present study is majorly focused on developing new 5HT2C agonists through computational approaches like screening, docking, and simulation using Phase, QikProp, Glide and Desmond applications of the Schrodinger suite. Screening protocols resulted in eight best hit molecules with affinity for the receptor and among them, five hits displayed binding affinity toward the conserved residue Asp 134 of the receptor. The stability of the five molecules in complex with the 5HT2C receptor was studied through molecular dynamic simulations. Three molecules, ZINC32123870, ZINC40312983 and ZINC32124535, maintained stable interactions with the Asp 134 residue throughout the 50 ns simulation run time. Further, due to the high sequence similarity seen among the receptors of 5HT2 family, the three potential hits were cross validated against other subtypes 5HT2A and 5HT2B of the 5HT2 family to determine the specificity of the molecules against the target. Among the three hits, ZINC32124535 was identified as the best potential hit based on the hydrogen bond interaction percentage with Asp residue [5HT2A (Asp 155:60%); 5HT2B (Asp155: No interaction); 5HT2C (Asp 134:86%)]. The ZINC32124535 molecule produced one salt bridge and hydrogen bond interactions with Asp 134, alike the known drug Lorcaserin. Based on the results, ZINC32124535 was identified as the best potential hit against the 5HT2C receptor.


Asunto(s)
Productos Biológicos/química , Receptor de Serotonina 5-HT2C/química , Receptor de Serotonina 5-HT2C/metabolismo , Agonistas del Receptor de Serotonina 5-HT2/química , Zinc/química , Asparagina/metabolismo , Sitios de Unión , Productos Biológicos/farmacología , Simulación por Computador , Diseño de Fármacos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Agonistas del Receptor de Serotonina 5-HT2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA