Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 622(7982): 393-401, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821590

RESUMEN

Recent human decedent model studies1,2 and compassionate xenograft use3 have explored the promise of porcine organs for human transplantation. To proceed to human studies, a clinically ready porcine donor must be engineered and its xenograft successfully tested in nonhuman primates. Here we describe the design, creation and long-term life-supporting function of kidney grafts from a genetically engineered porcine donor transplanted into a cynomolgus monkey model. The porcine donor was engineered to carry 69 genomic edits, eliminating glycan antigens, overexpressing human transgenes and inactivating porcine endogenous retroviruses. In vitro functional analyses showed that the edited kidney endothelial cells modulated inflammation to an extent that was indistinguishable from that of human endothelial cells, suggesting that these edited cells acquired a high level of human immune compatibility. When transplanted into cynomolgus monkeys, the kidneys with three glycan antigen knockouts alone experienced poor graft survival, whereas those with glycan antigen knockouts and human transgene expression demonstrated significantly longer survival time, suggesting the benefit of human transgene expression in vivo. These results show that preclinical studies of renal xenotransplantation could be successfully conducted in nonhuman primates and bring us closer to clinical trials of genetically engineered porcine renal grafts.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Macaca fascicularis , Porcinos , Trasplante Heterólogo , Animales , Humanos , Animales Modificados Genéticamente , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Trasplante de Riñón/métodos , Polisacáridos/deficiencia , Porcinos/genética , Trasplante Heterólogo/métodos , Transgenes/genética
2.
Cell Rep Med ; 4(3): 100959, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36863336

RESUMEN

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for ß cell replacement including the use of SC-islets or other types of novel cells in clinical settings.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Epiplón/cirugía , Islotes Pancreáticos/cirugía , Islotes Pancreáticos/metabolismo , Trasplante Homólogo , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/patología , Primates , Aloinjertos
3.
Mol Neurobiol ; 60(1): 235-246, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36258136

RESUMEN

We have previously shown that selective inhibition of histone deacetylase 3 (HDAC3) decreases infarct volume and improves long-term functional outcomes after stroke. In this study, we examined the effects of HDAC3 inhibition on cerebral edema and blood-brain barrier (BBB) leakage and explored its underlying mechanisms. Adult male Wistar rats were subjected to 2-h middle cerebral artery occlusion (MCAO) and randomly treated i.p. with either vehicle or a selective HDAC3 inhibitor (RGFP966) at 2 and 24 h after stroke. Modified neurological severity scores (mNSS) were calculated at 2 h, 1 day, and 3 days. H&E, Evans blue dye (EBD) assay, and fluorescein isothiocyanate (FITC)-dextran were employed to assess cerebral edema and BBB leakage. Western blot for matrix metalloproteinase-9 (MMP9), MMP-9 zymography, and immunostaining for HDAC3, GFAP, Iba-1, albumin, aquaporin-4, claudin-5, ZO-1, and NF-kB were performed. Early RGFP966 administration decreased cerebral edema (p = 0.002) and BBB leakage, as measured by EBD assay, FITC-dextran, and albumin extravasation (p < 0.01). RGFP966 significantly increased tight junction proteins (claudin-5 and ZO-1) in the peri-infarct area. RGFP966 also significantly decreased HDAC3 in GFAP + astrocytes, which correlated with better mNSS (r = 0.67, p = 0.03) and decreased cerebral edema (r = 0.64, p = 0.04). RGFP966 decreased aquaporin-4 in GFAP + astrocytes (p = 0.002), as well as, the inflammatory markers Iba-1, NF-kB, and MMP9 in the ischemic brain (p < 0.05). Early HDAC3 inhibition decreases cerebral edema and BBB leakage. BBB protection by RGFP966 is mediated in part by the upregulation of tight junction proteins, downregulation of aquaporin-4 and HDAC3 in astrocytes, and decreased neuroinflammation.


Asunto(s)
Acuaporinas , Edema Encefálico , Accidente Cerebrovascular , Ratas , Animales , Masculino , Barrera Hematoencefálica/metabolismo , Edema Encefálico/complicaciones , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/metabolismo , Claudina-5/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/metabolismo , Ratas Wistar , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Azul de Evans/metabolismo , Azul de Evans/farmacología , Albúminas/metabolismo , Acuaporinas/metabolismo
4.
Transplant Rev (Orlando) ; 36(1): 100674, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34861509

RESUMEN

Transplantation of xenogeneic organs is an attractive solution to the existing organ shortage dilemma, thus, securing a clinically acceptable prolongation of xenograft survival is an important goal. In preclinical transplantation models, recipients of liver, kidney, heart, or lung xenotransplants demonstrate significant graft damages through the release of pro-inflammatory molecules, including the C-reactive protein, cytokines, and histone-DNA complexes that all foster graft rejection. Recent studies have demonstrated that mitigation of ischemia reperfusion injury (IRI) greatly improves xenograft survival. Organ IRI develops primarily on a complex network of cytokines and chemokines responding to molecular cues from the graft milieu. Among these, interleukin 27 (IL-27) plays an immunomodulatory role in IRI onset due to graft environment-dependent pro- and anti- inflammatory activities. This review focuses on the impact of IL-27 on IRI of liver xenotransplants and provides insights on the function of IL-27 that could potentially guide genetic engineering strategies of donor pigs and/or conditioning of organs prior to transplantation.


Asunto(s)
Interleucina-27 , Trasplante de Hígado , Daño por Reperfusión , Animales , Xenoinjertos , Humanos , Interleucina-27/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Porcinos , Trasplante Heterólogo
5.
Am J Transplant ; 22(1): 46-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34331749

RESUMEN

Porcine cells devoid of three major carbohydrate xenoantigens, αGal, Neu5GC, and SDa (TKO) exhibit markedly reduced binding of human natural antibodies. Therefore, it is anticipated that TKO pigs will be better donors for human xenotransplantation. However, previous studies on TKO pigs using old world monkeys (OWMs) have been disappointing because of higher anti-TKO pig antibodies in OWMs than humans. Here, we show that long-term survival of renal xenografts from TKO pigs that express additional human transgenes (hTGs) can be achieved in cynomolgus monkeys. Kidney xenografts from TKO-hTG pigs were transplanted into eight cynomolgus recipients without pre-screening for low anti-pig antibody titers. Two recipients of TKO-hTG xenografts with low expression of human complement regulatory proteins (CRPs) (TKO-A) survived for 2 and 61 days, whereas six recipients of TKO-hTG xenografts with high CRP expression (TKO-B) survived for 15, 20, 71, 135, 265, and 316 days. Prolonged CD4+ T cell depletion and low anti-pig antibody titers, which were previously reported important for long-term survival of αGal knock-out (GTKO) xenografts, were not always required for long-term survival of TKO-hTG renal xenografts. This study indicates that OWMs such as cynomolgus monkeys can be used as a relevant model for clinical application of xenotransplantation using TKO pigs.


Asunto(s)
Trasplante de Riñón , Animales , Animales Modificados Genéticamente , Rechazo de Injerto/genética , Humanos , Macaca fascicularis , Porcinos , Trasplante Heterólogo
6.
Front Immunol ; 12: 695806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34305931

RESUMEN

Efforts at finding potential biomarkers of tolerance after kidney transplantation have been hindered by limited sample size, as well as the complicated mechanisms underlying tolerance and the potential risk of rejection after immunosuppressant withdrawal. In this work, three different publicly available genome-wide expression data sets of peripheral blood lymphocyte (PBL) from 63 tolerant patients were used to compare 14 different machine learning models for their ability to predict spontaneous kidney graft tolerance. We found that the Best Subset Selection (BSS) regression approach was the most powerful with a sensitivity of 91.7% and a specificity of 93.8% in the test group, and a specificity of 86.1% and a sensitivity of 80% in the validation group. A feature set with five genes (HLA-DOA, TCL1A, EBF1, CD79B, and PNOC) was identified using the BSS model. EBF1 downregulation was also an independent factor predictive of graft rejection and graft loss. An AUC value of 84.4% was achieved using the two-gene signature (EBF1 and HLA-DOA) as an input to our classifier. Overall, our systematic machine learning exploration suggests novel biological targets that might affect tolerance to renal allografts, and provides clinical insights that can potentially guide patient selection for immunosuppressant withdrawal.


Asunto(s)
Perfilación de la Expresión Génica , Rechazo de Injerto/prevención & control , Supervivencia de Injerto/efectos de los fármacos , Inmunosupresores/administración & dosificación , Trasplante de Riñón , Aprendizaje Automático , Transcriptoma , Tolerancia al Trasplante/efectos de los fármacos , Toma de Decisiones Clínicas , Bases de Datos Genéticas , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Humanos , Inmunosupresores/efectos adversos , Trasplante de Riñón/efectos adversos , Análisis de Secuencia por Matrices de Oligonucleótidos , Selección de Paciente , Valor Predictivo de las Pruebas , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Tolerancia al Trasplante/genética , Resultado del Tratamiento
7.
Am J Transplant ; 21(12): 3847-3857, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34327838

RESUMEN

Regulatory B cells (Bregs) have shown promise as anti-rejection therapy applied to organ transplantation. However, less is known about their effect on other B cell populations that are involved in chronic graft rejection. We recently uncovered that naïve B cells, stimulated by TLR ligand agonists, converted into B cells with regulatory properties (Bregs-TLR) that prevented allograft rejection. Here, we examine the granular phenotype and regulatory properties of Breg-TLR cells suppressing B cells. Cocultures of Bregs-TLR with LPS-activated B cells showed a dose-dependent suppression of targeted B cell proliferation. Adoptive transfers of Bregs-TLR induced a decline in antibody responses to antigenically disparate skin grafts. The role of Breg BCR specificity in regulation was assessed using B cell-deficient mice replenished with transgenic BCR (OB1) and TCR (OT-II) lymphocytes of matching antigenic specificity. Results indicated that proliferation of OB1 B cells, mediated through help from CD4+ OT-II cells, was suppressed by OB1 Bregs of similar specificity. Transcriptomic analyses indicated that Bregs-TLR suppression is associated with a block in targeted B cell differentiation controlled by PRDM1 (Blimp1). This work uncovered the regulatory properties of a new brand of Breg cells and provided mechanistic insights into potential applications of Breg therapy in transplantation.


Asunto(s)
Linfocitos B Reguladores , Traslado Adoptivo , Animales , Técnicas de Cocultivo , Activación de Linfocitos , Ratones
8.
Front Surg ; 8: 625394, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842530

RESUMEN

Although efforts have been made by transplant centers to increase the pool of available livers by extending the criteria of liver acceptance, this practice creates risks for recipients that include primary non-function of the graft, early allograft dysfunction and post-operative complications. Donor liver machine perfusion (MP) is a promising novel strategy that not only decreases cold ischemia time, but also serves as a method of assessing the viability of the graft. In this review, we summarize the data from liver machine perfusion clinical trials and discuss the various techniques available to date as well as future applications of machine perfusion. A variety of approaches have been reported including hypothermic machine perfusion (HMP) and normothermic machine perfusion (NMP); the advantages and disadvantages of each are just now beginning to be resolved. Important in this effort is developing markers of viability with lactate being the most predictive of graft functionality. The advent of machine perfusion has also permitted completely ischemia free transplantation by utilization of in situ NMP showed promising results. Animal studies that focus on defatting steatotic livers via NMP as well as groups that work on regenerating liver tissue ex vivo via MP. The broad incorporation of machine perfusion into routine clinical practice seems incredible.

9.
Transl Stroke Res ; 11(5): 1052-1063, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32016769

RESUMEN

Histone deacetylase 3 (HDAC3) has been implicated as neurotoxic in several neurodegenerative conditions. However, the role of HDAC3 in ischemic stroke has not been thoroughly explored. We tested the hypothesis that selective inhibition of HDAC3 after stroke affords neuroprotection. Adult male Wistar rats (n = 8/group) were subjected to 2 h of middle cerebral artery occlusion (MCAO), and randomly selected animals were treated intraperitoneally twice with either vehicle (1% Tween 80) or a selective HDAC3 inhibitor (RGFP966, 10 mg/kg) at 2 and 24 h after MCAO. Long-term behavioral tests were performed up to 28 days after MCAO. Another set of rats (n = 7/group) were sacrificed at 3 days for histological analysis. Immunostaining for HDAC3, acetyl-Histone 3 (AcH3), NeuN, TNF-alpha, toll-like receptor 4 (TLR4), cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP), Akt, and TUNEL were performed. Selective HDAC3 inhibition improved long-term functional outcome (p < 0.05) and reduced infarct volume (p < 0.0001). HDAC3 inhibition increased levels of AcH3 in the ischemic brain (p = 0.016). Higher levels of AcH3 were significantly correlated with better neurological scores and smaller infarct volumes (r = 0.74, p = 0.002; r = 0.6, p = 0.02, respectively). The RGFP966 treatment reduced apoptosis-TUNEL+, cleaved caspase-3+, and cleaved PARP+ cells-and neuroinflammation-TNF-alpha+ and TLR4+ cells-in the ischemic border compared to vehicle control (p < 0.05). The RGFP966 treatment also increased Akt expression in the ipsilateral cortex (p < 0.001). Selective HDAC3 inhibition after stroke improves long-term neurological outcome and decreases infarct volume. The neuroprotective effects of HDAC3 inhibition are associated with a reduction in apoptosis and inflammation and upregulation of the Akt pathway.


Asunto(s)
Caspasa 3/efectos de los fármacos , Histona Desacetilasas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Histona Desacetilasas/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas Wistar , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA