Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Microbiol ; 11: 509919, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042042

RESUMEN

Drought is a critical factor limiting the productivity of legumes worldwide. Legumes can enter into a unique tripartite symbiotic relationship with root-nodulating bacteria of genera Rhizobium, Bradyrhizobium, or Sinorhizobium and colonization by arbuscular mycorrhizal fungi (AMF). Rhizobial symbiosis provides nitrogen necessary for growth. AMF symbiosis enhances uptake of diffusion-limited nutrients such as P, Zn, Cu, etc., and also water from the soil via plant-associated fungal hyphae. Rhizobial and AMF symbioses can act synergistically in promoting plant growth and fitness, resulting in overall yield benefits under drought stress. One of the approaches that rhizobia use to survive under stress is the accumulation of compatible solutes, or osmolytes, such as trehalose. Trehalose is a non-reducing disaccharide and an osmolyte reported to accumulate in a range of organisms. High accumulation of trehalose in bacteroids during nodulation protects cells and proteins from osmotic shock, desiccation, and heat under drought stress. Manipulation of trehalose cell concentrations has been directly correlated with stress response in plants and other organisms, including AMF. However, the role of this compound in the tripartite symbiotic relationship is not fully explored. This review describes the biological importance and the role of trehalose in the tripartite symbiosis between plants, rhizobia, and AMF. In particular, we review the physiological functions and the molecular investigations of trehalose carried out using omics-based approaches. This review will pave the way for future studies investigating possible metabolic engineering of this biomolecule for enhancing abiotic stress tolerance in plants.

2.
PLoS One ; 15(2): e0228993, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32053664

RESUMEN

Bioirrigation has been defined as the transfer of hydraulically lifted water by a deep-rooted plant to a neighbouring shallow-rooted plant which cannot access deep soil moisture. In this study, we tested if facilitative effects of bioirrigation or the competition for water dominate the interaction of two intercropped plants-deep-rooted pigeon pea (PP) and shallow-rooted finger millet (FM) before and during a drought. Additionally, we tested how the presence of a common mycorrhizal network (CMN) affects the balance between facilitative (i.e. bioirrigation) and competitive interactions between two intercropping species. Our results show that PP can indeed promote the water relations of FM during a drought event. Specifically, stomatal conductance in FM controls dropped to low values of 27.1 to 33.6 mmol m-2s-1, while FM in intercropping treatments were able to maintain its stomatal conductance at 60 mmol m-2s-1. In addition, the presence of PP reduced the drought-induced foliar damage and mortality of FM. The observed facilitative effects of PP on FM were partially enhanced by the presence of a CMN. In contrast to the facilitative effects under drought, PP exerted strong competitive effects on FM before the onset of drought. This hindered growth and biomass production of FM when intercropped with PP, an effect that was even enhanced in the presence of a CMN. The results from our study thus indicate that in intercropping, deep-rooted plants may act as "bioirrigators" for shallow-rooted crops and that a CMN can promote these facilitative effects. However, the interspecific competition between the intercropped plants under conditions of abundant moisture supply can be strong and are enhanced by the presence of a CMN. In more general terms, our study shows that the extent by which the antagonistic effects of facilitation and competition are expressed in an intercropping system strongly depends on the availability of resources, which in the case of the present study was water and the presence of biotic interactions (i.e. the presence of a CMN).


Asunto(s)
Sequías , Mijos/fisiología , Pisum sativum/metabolismo , Pisum sativum/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Agua/metabolismo , Biomasa , Mijos/metabolismo
3.
Front Plant Sci ; 8: 2204, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29375594

RESUMEN

The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

4.
Fungal Genet Biol ; 45(6): 812-7, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18406181

RESUMEN

The underground network of arbuscular mycorrhizal (AM) fungi is decisive for the above-ground diversity of many plant ecosystems, but tools to investigate the population structure of AM fungi are sorely lacking. Here, we present a bioinformatics approach to identify microsatellite markers in the AM fungus Glomus intraradices. Based on 1958 contigs of this fungus, assembled from public databases, we identified 842 microsatellites. One hundred of them were subjected to closer scrutiny by designing flanking primers and performing an extensive screen to identify polymorphic loci. We obtained 18 polymorphic microsatellite markers, and we found that seven out of eight individual single-spore cultures of G. intraradices could readily be identified by at least five allelic differences, as compared to all other strains. Two single-spore cultures, however, nominally originating from completely different locations, displayed identity at all 18 loci, suggesting with 99.999999% probability that they represent a single clone.


Asunto(s)
Repeticiones de Microsatélite , Micorrizas/clasificación , Micorrizas/genética , Raíces de Plantas/microbiología , Alelos , ADN de Hongos/genética , Marcadores Genéticos , Técnicas de Tipificación Micológica , Polimorfismo Genético , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética
5.
New Phytol ; 178(3): 672-87, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18298433

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are important symbionts of plants that improve plant nutrient acquisition and promote plant diversity. Although within-species genetic differences among AMF have been shown to differentially affect plant growth, very little is actually known about the degree of genetic diversity in AMF populations. This is largely because of difficulties in isolation and cultivation of the fungi in a clean system allowing reliable genotyping to be performed. A population of the arbuscular mycorrhizal fungus Glomus intraradices growing in an in vitro cultivation system was studied using newly developed simple sequence repeat (SSR), nuclear gene intron and mitochondrial ribosomal gene intron markers. The markers revealed a strong differentiation at the nuclear and mitochondrial level among isolates. Genotypes were nonrandomly distributed among four plots showing genetic subdivisions in the field. Meanwhile, identical genotypes were found in geographically distant locations. AMF genotypes showed significant preferences to different host plant species (Glycine max, Helianthus annuus and Allium porrum) used before the fungal in vitro culture establishment. Host plants in a field could provide a heterogeneous environment favouring certain genotypes. Such preferences may partly explain within-population patterns of genetic diversity.


Asunto(s)
ADN Mitocondrial/genética , Marcadores Genéticos/genética , Micorrizas/genética , Plantas/microbiología , ADN de Hongos/genética , Variación Genética , Genotipo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA