Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 173(3): 762-775.e16, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677517

RESUMEN

Mechanotransduction plays a crucial role in vascular biology. One example of this is the local regulation of vascular resistance via flow-mediated dilation (FMD). Impairment of this process is a hallmark of endothelial dysfunction and a precursor to a wide array of vascular diseases, such as hypertension and atherosclerosis. Yet the molecules responsible for sensing flow (shear stress) within endothelial cells remain largely unknown. We designed a 384-well screening system that applies shear stress on cultured cells. We identified a mechanosensitive cell line that exhibits shear stress-activated calcium transients, screened a focused RNAi library, and identified GPR68 as necessary and sufficient for shear stress responses. GPR68 is expressed in endothelial cells of small-diameter (resistance) arteries. Importantly, Gpr68-deficient mice display markedly impaired acute FMD and chronic flow-mediated outward remodeling in mesenteric arterioles. Therefore, GPR68 is an essential flow sensor in arteriolar endothelium and is a critical signaling component in cardiovascular pathophysiology.


Asunto(s)
Mecanotransducción Celular , Interferencia de ARN , Receptores Acoplados a Proteínas G/fisiología , Animales , Materiales Biocompatibles , Calcio/metabolismo , Línea Celular Tumoral , Células Endoteliales/fisiología , Endotelio Vascular/citología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración de Iones de Hidrógeno , Arterias Mesentéricas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores Acoplados a Proteínas G/genética , Resistencia al Corte , Estrés Mecánico , Resistencia Vascular
2.
Cell ; 164(3): 499-511, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26824658

RESUMEN

The volume-regulated anion channel (VRAC) is activated when a cell swells, and it plays a central role in maintaining cell volume in response to osmotic challenges. SWELL1 (LRRC8A) was recently identified as an essential component of VRAC. However, the identity of the pore-forming subunits of VRAC and how the channel is gated by cell swelling are unknown. Here, we show that SWELL1 and up to four other LRRC8 subunits assemble into heterogeneous complexes of ∼800 kDa. When reconstituted into bilayers, LRRC8 complexes are sufficient to form anion channels activated by osmolality gradients. In bilayers, as well as in cells, the single-channel conductance of the complexes depends on the LRRC8 composition. Finally, low ionic strength (Γ) in the absence of an osmotic gradient activates the complexes in bilayers. These data demonstrate that LRRC8 proteins together constitute the VRAC pore and that hypotonic stress can activate VRAC through a decrease in cytoplasmic Γ.


Asunto(s)
Canales Iónicos/metabolismo , Proteínas de la Membrana/metabolismo , Células HeLa , Humanos , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Ósmosis
3.
Nat Commun ; 6: 8329, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26387913

RESUMEN

Piezo1 ion channels are mediators of mechanotransduction in several cell types including the vascular endothelium, renal tubular cells and erythrocytes. Gain-of-function mutations in PIEZO1 cause an autosomal dominant haemolytic anaemia in humans called dehydrated hereditary stomatocytosis. However, the phenotypic consequence of PIEZO1 loss of function in humans has not previously been documented. Here we discover a novel role of this channel in the lymphatic system. Through whole-exome sequencing, we identify biallelic mutations in PIEZO1 (a splicing variant leading to early truncation and a non-synonymous missense variant) in a pair of siblings affected with persistent lymphoedema caused by congenital lymphatic dysplasia. Analysis of patients' erythrocytes as well as studies in a heterologous system reveal greatly attenuated PIEZO1 function in affected alleles. Our results delineate a novel clinical category of PIEZO1-associated hereditary lymphoedema.


Asunto(s)
Anemia Hemolítica Congénita/metabolismo , Hidropesía Fetal/metabolismo , Canales Iónicos/metabolismo , Enfermedades Linfáticas/metabolismo , Secuencia de Aminoácidos , Anemia Hemolítica Congénita/genética , Preescolar , Eritrocitos/metabolismo , Femenino , Genes Recesivos , Humanos , Hidropesía Fetal/genética , Lactante , Canales Iónicos/química , Canales Iónicos/genética , Enfermedades Linfáticas/genética , Masculino , Datos de Secuencia Molecular , Mutación , Mutación Missense , Alineación de Secuencia
4.
Sci Transl Med ; 7(287): 287ra72, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25972004

RESUMEN

Chronic pain is a highly prevalent and poorly managed human health problem. We used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia, a prominent symptom of chronic pain. We identified expression levels of Chrna6, which encodes the α6 subunit of the nicotinic acetylcholine receptor (nAChR), as highly associated with allodynia. We confirmed the importance of α6* (α6-containing) nAChRs by analyzing both gain- and loss-of-function mutants. We find that mechanical allodynia associated with neuropathic and inflammatory injuries is significantly altered in α6* mutants, and that α6* but not α4* nicotinic receptors are absolutely required for peripheral and/or spinal nicotine analgesia. Furthermore, we show that Chrna6's role in analgesia is at least partially due to direct interaction and cross-inhibition of α6* nAChRs with P2X2/3 receptors in DRG nociceptors. Finally, we establish the relevance of our results to humans by the observation of genetic association in patients suffering from chronic postsurgical and temporomandibular pain.


Asunto(s)
Dolor Crónico/genética , Receptores Nicotínicos/genética , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Animales , Regulación hacia Abajo , Transferencia Resonante de Energía de Fluorescencia , Ganglios Espinales/metabolismo , Humanos , Ratones , Ratones Mutantes , Antagonistas del Receptor Purinérgico P2X/farmacología
5.
Nat Commun ; 6: 7223, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26008989

RESUMEN

Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.


Asunto(s)
Proteínas de Drosophila/química , Canales Iónicos/química , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HEK293 , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Datos de Secuencia Molecular
6.
Elife ; 42015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26001275

RESUMEN

Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ~3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function.


Asunto(s)
Canales Iónicos/agonistas , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones
7.
Nature ; 516(7529): 121-5, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25471886

RESUMEN

The sense of touch provides critical information about our physical environment by transforming mechanical energy into electrical signals. It is postulated that mechanically activated cation channels initiate touch sensation, but the identity of these molecules in mammals has been elusive. Piezo2 is a rapidly adapting, mechanically activated ion channel expressed in a subset of sensory neurons of the dorsal root ganglion and in cutaneous mechanoreceptors known as Merkel-cell-neurite complexes. It has been demonstrated that Merkel cells have a role in vertebrate mechanosensation using Piezo2, particularly in shaping the type of current sent by the innervating sensory neuron; however, major aspects of touch sensation remain intact without Merkel cell activity. Here we show that mice lacking Piezo2 in both adult sensory neurons and Merkel cells exhibit a profound loss of touch sensation. We precisely localize Piezo2 to the peripheral endings of a broad range of low-threshold mechanoreceptors that innervate both hairy and glabrous skin. Most rapidly adapting, mechanically activated currents in dorsal root ganglion neuronal cultures are absent in Piezo2 conditional knockout mice, and ex vivo skin nerve preparation studies show that the mechanosensitivity of low-threshold mechanoreceptors strongly depends on Piezo2. This cellular phenotype correlates with an unprecedented behavioural phenotype: an almost complete deficit in light-touch sensation in multiple behavioural assays, without affecting other somatosensory functions. Our results highlight that a single ion channel that displays rapidly adapting, mechanically activated currents in vitro is responsible for the mechanosensitivity of most low-threshold mechanoreceptor subtypes involved in innocuous touch sensation. Notably, we find that touch and pain sensation are separable, suggesting that as-yet-unknown mechanically activated ion channel(s) must account for noxious (painful) mechanosensation.


Asunto(s)
Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Piel/inervación , Tacto/fisiología , Animales , Canales Iónicos/genética , Mecanorreceptores/metabolismo , Mecanotransducción Celular/genética , Células de Merkel/fisiología , Ratones , Ratones Noqueados , Células Receptoras Sensoriales/fisiología , Tacto/genética
8.
Proc Natl Acad Sci U S A ; 111(28): 10347-52, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24958852

RESUMEN

Mechanosensation is perhaps the last sensory modality not understood at the molecular level. Ion channels that sense mechanical force are postulated to play critical roles in a variety of biological processes including sensing touch/pain (somatosensation), sound (hearing), and shear stress (cardiovascular physiology); however, the identity of these ion channels has remained elusive. We previously identified Piezo1 and Piezo2 as mechanically activated cation channels that are expressed in many mechanosensitive cell types. Here, we show that Piezo1 is expressed in endothelial cells of developing blood vessels in mice. Piezo1-deficient embryos die at midgestation with defects in vascular remodeling, a process critically influenced by blood flow. We demonstrate that Piezo1 is activated by shear stress, the major type of mechanical force experienced by endothelial cells in response to blood flow. Furthermore, loss of Piezo1 in endothelial cells leads to deficits in stress fiber and cellular orientation in response to shear stress, linking Piezo1 mechanotransduction to regulation of cell morphology. These findings highlight an essential role of mammalian Piezo1 in vascular development during embryonic development.


Asunto(s)
Sistema Cardiovascular/embriología , Desarrollo Embrionario/fisiología , Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Animales , Sistema Cardiovascular/citología , Células Endoteliales/citología , Canales Iónicos/genética , Ratones , Ratones Transgénicos
9.
Cell ; 157(2): 447-458, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725410

RESUMEN

Maintenance of a constant cell volume in response to extracellular or intracellular osmotic changes is critical for cellular homeostasis. Activation of a ubiquitous volume-regulated anion channel (VRAC) plays a key role in this process; however, its molecular identity in vertebrates remains unknown. Here, we used a cell-based fluorescence assay and performed a genome-wide RNAi screen to find components of VRAC. We identified SWELL1 (LRRC8A), a member of a four-transmembrane protein family with unknown function, as essential for hypotonicity-induced iodide influx. SWELL1 is localized to the plasma membrane, and its knockdown dramatically reduces endogenous VRAC currents and regulatory cell volume decrease in various cell types. Furthermore, point mutations in SWELL1 cause a significant change in VRAC anion selectivity, demonstrating that SWELL1 is an essential VRAC component. These findings enable further molecular characterization of the VRAC channel complex and genetic studies for understanding the function of VRAC in normal physiology and disease.


Asunto(s)
Tamaño de la Célula , Proteínas de la Membrana/metabolismo , Animales , Membrana Celular/química , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Células HEK293 , Células HeLa , Humanos , Yoduros/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Interferencia de ARN
10.
Nat Commun ; 4: 1884, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23695678

RESUMEN

Dehydrated hereditary stomatocytosis is a genetic condition with defective red blood cell membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations in the mechanically activated PIEZO1 (FAM38A) ion channel were associated with dehydrated hereditary stomatocytosis. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated dehydrated hereditary stomatocytosis cases, we identify three novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for dehydrated hereditary stomatocytosis. All the dehydrated hereditary stomatocytosis-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in red blood cells of dehydrated hereditary stomatocytosis patients. Our findings also suggest a new role for mechanotransduction in red blood cell biology and pathophysiology.


Asunto(s)
Anemia Hemolítica Congénita/genética , Hidropesía Fetal/genética , Activación del Canal Iónico/genética , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mutación/genética , Adolescente , Adulto , Anciano , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Niño , Análisis Mutacional de ADN , Femenino , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Canales Iónicos/química , Cinética , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Linaje , Proteínas Recombinantes/metabolismo , Adulto Joven
11.
Proc Natl Acad Sci U S A ; 110(12): 4667-72, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23487782

RESUMEN

Mechanotransduction, the pathway by which mechanical forces are translated to biological signals, plays important but poorly characterized roles in physiology. PIEZOs are recently identified, widely expressed, mechanically activated ion channels that are hypothesized to play a role in mechanotransduction in mammals. Here, we describe two distinct PIEZO2 mutations in patients with a subtype of Distal Arthrogryposis Type 5 characterized by generalized autosomal dominant contractures with limited eye movements, restrictive lung disease, and variable absence of cruciate knee ligaments. Electrophysiological studies reveal that the two PIEZO2 mutations affect biophysical properties related to channel inactivation: both E2727del and I802F mutations cause the PIEZO2-dependent, mechanically activated currents to recover faster from inactivation, while E2727del also causes a slowing of inactivation. Both types of changes in kinetics result in increased channel activity in response to a given mechanical stimulus, suggesting that Distal Arthrogryposis Type 5 can be caused by gain-of-function mutations in PIEZO2. We further show that overexpression of mutated PIEZO2 cDNAs does not cause constitutive activity or toxicity to cells, indicating that the observed phenotype is likely due to a mechanotransduction defect. Our studies identify a type of channelopathy and link the dysfunction of mechanically activated ion channels to developmental malformations and joint contractures.


Asunto(s)
Artrogriposis , Enfermedades Genéticas Congénitas , Canales Iónicos/genética , Canales Iónicos/metabolismo , Mecanotransducción Celular/genética , Mutación , Adulto , Artrogriposis/genética , Artrogriposis/metabolismo , Artrogriposis/patología , Artrogriposis/fisiopatología , Línea Celular , Femenino , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Enfermedades Genéticas Congénitas/fisiopatología , Humanos , Lactante , Recién Nacido , Masculino
12.
Cell Rep ; 2(3): 511-7, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22921401

RESUMEN

Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK) contributes to increased pain sensitivity (hyperalgesia) to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA) channel piezo2 (known as FAM38B) present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2) activation in heterologous expression systems. Protein kinase A (PKA) and protein kinase C (PKC) agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.


Asunto(s)
Bradiquinina/metabolismo , Citocinas/metabolismo , Hiperalgesia/metabolismo , Mecanorreceptores/metabolismo , Potenciales de la Membrana , Proteínas de Neoplasias/metabolismo , Animales , Bradiquinina/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Citocinas/genética , Inhibidores Enzimáticos/farmacología , Células HEK293 , Humanos , Hiperalgesia/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Mecanorreceptores/patología , Proteínas de Neoplasias/genética , Nociceptores/metabolismo , Nociceptores/patología , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Ratas , Receptor de Bradiquinina B2/genética , Receptor de Bradiquinina B2/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
13.
Nature ; 483(7388): 176-81, 2012 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-22343900

RESUMEN

Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos/química , Canales Iónicos/metabolismo , Mecanotransducción Celular/fisiología , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Conductividad Eléctrica , Células HEK293 , Células HeLa , Humanos , Canales Iónicos/genética , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Ratones , Datos de Secuencia Molecular , Células 3T3 NIH , Porosidad , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
14.
Nat Chem Biol ; 7(6): 351-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21499266

RESUMEN

Intracellular Ca(2+) is essential for diverse cellular functions. Ca(2+) entry into many cell types including immune cells is triggered by depleting endoplasmic reticulum (ER) Ca(2+), a process termed store-operated Ca(2+) entry (SOCE). STIM1 is an ER Ca(2+) sensor. Upon Ca(2+) store depletion, STIM1 clusters at ER-plasma membrane junctions where it interacts with and gates Ca(2+)-permeable Orai1 ion channels. Here we show that STIM1 is also activated by temperature. Heating cells caused clustering of STIM1 at temperatures above 35 °C without depleting Ca(2+) stores and led to Orai1-mediated Ca(2+) influx as a heat off-response (response after cooling). Notably, the functional coupling of STIM1 and Orai1 is prevented at high temperatures, potentially explaining the heat off-response. Additionally, physiologically relevant temperature shifts modulate STIM1-dependent gene expression in Jurkat T cells. Therefore, temperature is an important regulator of STIM1 function.


Asunto(s)
Calcio/metabolismo , Regulación de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Temperatura , Canales de Calcio/metabolismo , Retículo Endoplásmico , Calor , Humanos , Células Jurkat , Proteína ORAI1 , Molécula de Interacción Estromal 1
15.
Science ; 330(6000): 55-60, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20813920

RESUMEN

Mechanical stimuli drive many physiological processes, including touch and pain sensation, hearing, and blood pressure regulation. Mechanically activated (MA) cation channel activities have been recorded in many cells, but the responsible molecules have not been identified. We characterized a rapidly adapting MA current in a mouse neuroblastoma cell line. Expression profiling and RNA interference knockdown of candidate genes identified Piezo1 (Fam38A) to be required for MA currents in these cells. Piezo1 and related Piezo2 (Fam38B) are vertebrate multipass transmembrane proteins with homologs in invertebrates, plants, and protozoa. Overexpression of mouse Piezo1 or Piezo2 induced two kinetically distinct MA currents. Piezos are expressed in several tissues, and knockdown of Piezo2 in dorsal root ganglia neurons specifically reduced rapidly adapting MA currents. We propose that Piezos are components of MA cation channels.


Asunto(s)
Cationes/metabolismo , Canales Iónicos/metabolismo , Mecanotransducción Celular , Neuronas/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/química , Clonación Molecular , Ganglios Espinales/citología , Canales Iónicos/análisis , Canales Iónicos/química , Canales Iónicos/genética , Potenciales de la Membrana , Ratones , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Presión , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/genética , Transfección
16.
J Neurosci ; 29(1): 153-8, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19129393

RESUMEN

Maintaining physiological pH is required for survival, and exposure to alkaline chemicals such as ammonia (smelling salts) elicits severe pain and inflammation through unknown mechanisms. TRPV1, the capsaicin receptor, is an integrator of noxious stimuli including heat and extracellular acidic pH. Here, we report that ammonia activates TRPV1, TRPA1 (another polymodal nocisensor), and other unknown receptor(s) expressed in sensory neurons. Ammonia and intracellular alkalization activate TRPV1 through a mechanism that involves a cytoplasmic histidine residue, not used by other TRPV1 agonists such as heat, capsaicin or low pH. Our studies show that TRPV1 detects both acidic and basic deviations from homeostatic pH.


Asunto(s)
Ácidos/farmacología , Cloruro de Amonio/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Animales , Calcio/metabolismo , Capsaicina/farmacología , Línea Celular Transformada , Ganglios Espinales/citología , Humanos , Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/genética , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Mutagénesis Sitio-Dirigida/métodos , Técnicas de Placa-Clamp , Pirazinas/farmacología , Piridinas/farmacología , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Transfección/métodos
17.
Neuron ; 54(3): 371-8, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17481391

RESUMEN

ThermoTRPs, a subset of the Transient Receptor Potential (TRP) family of cation channels, have been implicated in sensing temperature. TRPM8 and TRPA1 are both activated by cooling; however, it is unclear whether either ion channel is required for thermosensation in vivo. We show that mice lacking TRPM8 have severe behavioral deficits in response to cold stimuli. In thermotaxis assays of temperature gradient and two-temperature choice assays, TRPM8-deficient mice exhibit strikingly reduced avoidance of cold temperatures. TRPM8-deficient mice also lack behavioral response to cold-inducing icilin application and display an attenuated response to acetone, an unpleasant cold stimulus. However, TRPM8-deficient mice have normal nociceptive-like responses to subzero centigrade temperatures, suggesting the presence of at least one additional noxious cold receptor. Finally, we show that TRPM8 mediates the analgesic effect of moderate cooling after administration of formalin, a painful stimulus. Therefore, depending on context, TRPM8 contributes to sensing unpleasant cold stimuli or mediating the effects of cold analgesia.


Asunto(s)
Frío , Canales Catiónicos TRPM/fisiología , Sensación Térmica/fisiología , Animales , Conducta Animal/fisiología , Calcio/metabolismo , Conducta de Elección/efectos de los fármacos , Conducta de Elección/fisiología , Formaldehído/farmacología , Ratones , Ratones Noqueados , Dimensión del Dolor/métodos , Pirimidinonas/farmacología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Umbral Sensorial/efectos de los fármacos , Umbral Sensorial/fisiología , Canales Catiónicos TRPM/deficiencia , Factores de Tiempo
18.
Appl Environ Microbiol ; 73(8): 2612-23, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17220248

RESUMEN

Acidic thermal springs offer ideal environments for studying processes underlying extremophile microbial diversity. We used a carefully designed comparative analysis of acidic thermal springs in Yellowstone National Park to determine how abiotic factors (chemistry and temperature) shape acidophile microbial communities. Small-subunit rRNA gene sequences were PCR amplified, cloned, and sequenced, by using evolutionarily conserved bacterium-specific primers, directly from environmental DNA extracted from Amphitheater Springs and Roaring Mountain sediment samples. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and colorimetric assays were used to analyze sediment chemistry, while an optical emission spectrometer was used to evaluate water chemistry and electronic probes were used to measure the pH, temperature, and E(h) of the spring waters. Phylogenetic-statistical analyses found exceptionally strong correlations between bacterial community composition and sediment mineral chemistry, followed by weaker but significant correlations with temperature gradients. For example, sulfur-rich sediment samples contained a high diversity of uncultured organisms related to Hydrogenobaculum spp., while iron-rich sediments were dominated by uncultured organisms related to a diverse array of gram-positive iron oxidizers. A detailed analysis of redox chemistry indicated that the available energy sources and electron acceptors were sufficient to support the metabolic potential of Hydrogenobaculum spp. and iron oxidizers, respectively. Principal-component analysis found that two factors explained 95% of the genetic diversity, with most of the variance attributable to mineral chemistry and a smaller fraction attributable to temperature.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Sedimentos Geológicos/microbiología , Manantiales de Aguas Termales/química , Manantiales de Aguas Termales/microbiología , Bacterias/genética , Colorimetría , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Ribosómico/aislamiento & purificación , Microscopía Electrónica de Rastreo , Minerales/análisis , Minerales/química , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Espectrometría por Rayos X , Temperatura , Estados Unidos , Microbiología del Agua , Difracción de Rayos X
19.
Nat Neurosci ; 9(4): 493-500, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16520735

RESUMEN

Menthol is a cooling compound derived from mint leaves and is extensively used as a flavoring chemical. Menthol activates transient receptor potential melastatin 8 (TRPM8), an ion channel also activated by cold, voltage and phosphatidylinositol-4,5-bisphosphate (PIP2). Here we investigated the mechanism by which menthol activates mouse TRPM8. Using a new high-throughput approach, we screened a random mutant library consisting of approximately 14,000 individual TRPM8 mutants for clones that are affected in their response to menthol while retaining channel function. We identified determinants of menthol sensitivity in two regions: putative transmembrane segment 2 (S2) and the C-terminal TRP domain. Analysis of these mutants indicated that activation by menthol involves a gating mechanism distinct and separable from gating by cold, voltage or PIP2. Notably, TRP domain mutations mainly attenuated menthol efficacy, suggesting that this domain influences events downstream of initial binding. In contrast, S2 mutations strongly shifted the concentration dependence of menthol activation, raising the possibility that S2 influences menthol binding.


Asunto(s)
Frío , Mentol/metabolismo , Canales Catiónicos TRPM/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Cricetinae , Biblioteca de Genes , Mentol/química , Ratones , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Pirimidinonas/metabolismo , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA