Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794175

RESUMEN

Neutrophils, which constitute the most abundant leukocytes in human blood, emerge as crucial players in the induction of endothelial cell death and the modulation of endothelial cell responses under both physiological and pathological conditions. The hallmark of preeclampsia is endothelial dysfunction induced by systemic inflammation, in which neutrophils, particularly through the formation of neutrophil extracellular traps (NETs), play a pivotal role in the development and perpetuation of endothelial dysfunction and the hypertensive state. Considering the potential of numerous pharmaceutical agents to attenuate NET formation (NETosis) in preeclampsia, a comprehensive assessment of the extensively studied candidates becomes imperative. This review aims to identify mechanisms associated with the induction and negative regulation of NETs in the context of preeclampsia. We discuss potential drugs to modulate NETosis, such as NF-κß inhibitors, vitamin D, and aspirin, and their association with mutagenicity and genotoxicity. Strong evidence supports the notion that molecules involved in the activation of NETs could serve as promising targets for the treatment of preeclampsia.

2.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791315

RESUMEN

LOX-1, ORL-1, or lectin-like oxidized low-density lipoprotein receptor 1 is a transmembrane glycoprotein that binds and internalizes ox-LDL in foam cells. LOX-1 is the main receptor for oxidized low-density lipoproteins (ox-LDL). The LDL comes from food intake and circulates through the bloodstream. LOX-1 belongs to scavenger receptors (SR), which are associated with various cardiovascular diseases. The most important and severe of these is the formation of atherosclerotic plaques in the intimal layer of the endothelium. These plaques can evolve into complicated thrombi with the participation of fibroblasts, activated platelets, apoptotic muscle cells, and macrophages transformed into foam cells. This process causes changes in vascular endothelial homeostasis, leading to partial or total obstruction in the lumen of blood vessels. This obstruction can result in oxygen deprivation to the heart. Recently, LOX-1 has been involved in other pathologies, such as obesity and diabetes mellitus. However, the development of atherosclerosis has been the most relevant due to its relationship with cerebrovascular accidents and heart attacks. In this review, we will summarize findings related to the physiologic and pathophysiological processes of LOX-1 to support the detection, diagnosis, and prevention of those diseases.


Asunto(s)
Enfermedades Cardiovasculares , Receptores Depuradores de Clase E , Humanos , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/etiología , Animales , Lipoproteínas LDL/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36614306

RESUMEN

Glycosylation is a post-translational modification that affects the stability, structure, antigenicity and charge of proteins. In the immune system, glycosylation is involved in the regulation of ligand-receptor interactions, such as in B-cell and T-cell activating receptors. Alterations in glycosylation have been described in several autoimmune diseases, such as systemic lupus erythematosus (SLE), in which alterations have been found mainly in the glycosylation of B lymphocytes, T lymphocytes and immunoglobulins. In immunoglobulin G of lupus patients, a decrease in galactosylation, sialylation, and nucleotide fucose, as well as an increase in the N-acetylglucosamine bisector, are observed. These changes in glycoisolation affect the interactions of immunoglobulins with Fc receptors and are associated with pericarditis, proteinuria, nephritis, and the presence of antinuclear antibodies. In T cells, alterations have been described in the glycosylation of receptors involved in activation, such as the T cell receptor; these changes affect the affinity with their ligands and modulate the binding to endogenous lectins such as galectins. In T cells from lupus patients, a decrease in galectin 1 binding is observed, which could favor activation and reduce apoptosis. Furthermore, these alterations in glycosylation correlate with disease activity and clinical manifestations, and thus have potential use as biomarkers. In this review, we summarize findings on glycosylation alterations in SLE and how they relate to immune system defects and their clinical manifestations.


Asunto(s)
Linfocitos B , Inmunoglobulina G , Lupus Eritematoso Sistémico , Linfocitos T , Humanos , Linfocitos B/metabolismo , Glicosilación , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/metabolismo , Linfocitos T/metabolismo
6.
Mol Cell Biochem ; 478(2): 361-362, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35829869

RESUMEN

Re. Re.: "Immunothrombotic dysregulation in Chagas disease (CD) and COVID-19: a comparative study of anticoagulation": In the commentary on our paper, Hasslocher-Moreno made the point that indeterminate and digestive forms are not related to thromboembolic events, only thrombogenic alterations occur in CD with cardiopathy, however there is indirect evidence related to thombotic alterations, such as cerebral thrombosis. Our assertion is based on previous data discussed in this letter.


Asunto(s)
COVID-19 , Enfermedad de Chagas , Humanos , Enfermedad de Chagas/tratamiento farmacológico , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico
7.
Int J Mol Sci ; 23(15)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35955411

RESUMEN

Ageing is associated with changes in body composition, such as low muscle mass (sarcopenia), decreased grip strength or physical function (dynapenia), and accumulation of fat mass. When the accumulation of fat mass synergistically accompanies low muscle mass or reduced grip strength, it results in sarcopenic obesity and dynapenic obesity, respectively. These types of obesity contribute to the increased risk of cardiovascular disease and mortality in the elderly, which could increase the damage caused by COVID-19. In this review, we associated factors that could generate a higher risk of COVID-19 complications in dynapenic obesity and sarcopenic obesity. For example, skeletal muscle regulates the expression of inflammatory cytokines and supports metabolic stress in pulmonary disease; hence, the presence of dynapenic obesity or sarcopenic obesity could be related to a poor prognosis in COVID-19 patients.


Asunto(s)
COVID-19 , Sarcopenia , Anciano , Composición Corporal , COVID-19/complicaciones , Fuerza de la Mano , Humanos , Fuerza Muscular/fisiología , Músculo Esquelético , Obesidad/complicaciones , Sarcopenia/etiología
8.
Sci Rep ; 11(1): 22288, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782703

RESUMEN

Numerous repositioned drugs have been sought to decrease the severity of SARS-CoV-2 infection. It is known that among its physicochemical properties, Ursodeoxycholic Acid (UDCA) has a reduction in surface tension and cholesterol solubilization, it has also been used to treat cholesterol gallstones and viral hepatitis. In this study, molecular docking was performed with the SARS-CoV-2 Spike protein and UDCA. In order to confirm this interaction, we used Molecular Dynamics (MD) in "SARS-CoV-2 Spike protein-UDCA". Using another system, we also simulated MD with six UDCA residues around the Spike protein at random, naming this "SARS-CoV-2 Spike protein-6UDCA". Finally, we evaluated the possible interaction between UDCA and different types of membranes, considering the possible membrane conformation of SARS-CoV-2, this was named "SARS-CoV-2 membrane-UDCA". In the "SARS-CoV-2 Spike protein-UDCA", we found that UDCA exhibits affinity towards the central region of the Spike protein structure of - 386.35 kcal/mol, in a region with 3 alpha helices, which comprises residues from K986 to C1032 of each monomer. MD confirmed that UDCA remains attached and occasionally forms hydrogen bonds with residues R995 and T998. In the presence of UDCA, we observed that the distances between residues atoms OG1 and CG2 of T998 in the monomers A, B, and C in the prefusion state do not change and remain at 5.93 ± 0.62 and 7.78 ± 0.51 Å, respectively, compared to the post-fusion state. Next, in "SARS-CoV-2 Spike protein-6UDCA", the three UDCA showed affinity towards different regions of the Spike protein, but only one of them remained bound to the region between the region's heptad repeat 1 and heptad repeat 2 (HR1 and HR2) for 375 ps of the trajectory. The RMSD of monomer C was the smallest of the three monomers with a value of 2.89 ± 0.32, likewise, the smallest RMSF was also of the monomer C (2.25 ± 056). In addition, in the simulation of "SARS-CoV-2 membrane-UDCA", UDCA had a higher affinity toward the virion-like membrane; where three of the four residues remained attached once they were close (5 Å, to the centre of mass) to the membrane by 30 ns. However, only one of them remained attached to the plasma-like membrane and this was in a cluster of cholesterol molecules. We have shown that UDCA interacts in two distinct regions of Spike protein sequences. In addition, UDCA tends to stay bound to the membrane, which could potentially reduce the internalization of SARS-CoV-2 in the host cell.


Asunto(s)
Antivirales/metabolismo , Reposicionamiento de Medicamentos/métodos , Membrana Dobles de Lípidos/metabolismo , Simulación del Acoplamiento Molecular/métodos , Fosfolípidos/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Ácido Ursodesoxicólico/metabolismo , Antivirales/química , COVID-19/metabolismo , COVID-19/virología , Humanos , Enlace de Hidrógeno , Fusión de Membrana , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Ácido Ursodesoxicólico/química , Virión/metabolismo
9.
Sci Rep ; 11(1): 22837, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819549

RESUMEN

DNA barcoding can be useful for species identification and phylogenetic analysis, but its effectivity has not been verified in most neotropical cloud forest plants. We tested three plastid barcodes, rbcLa, matK, and trnH-psbA, in selected pteridophytes, a well-represented group in these forests, from a little-explored area in Oaxaca, Mexico, applying the CBOL criteria for barcoding. We used BLASTn, genetic distance, and monophyly tree-based analyses employing neighbor-joining (NJ), maximum likelihood (ML), and Bayesian inference methods. Universal primers for rbcLa and trnH-psbA were successfully amplified and bi-directionally sequenced, but matK could not be amplified for most species. rbcLa showed the highest species discrimination in BLASTn (66.67%). trnH-psbA exhibited higher significant interspecific divergence values than rbcL and rbcLa + trnH-psbA (two-sample sign test, P value < 2.2e-16). Using NJ and ML phylogenetic trees, monophyletic species were successfully resolved (100%), differing only in support values and displaying full agreement with the most recent fern classification. ML trees showed the highest mean support value (80.95%). trnH-psbA was the only barcode that could detect the Elaphoglossoideae subfamily. Species discrimination did not increase using rbcLa + trnH-psbA. rbcLa is useful for fern barcoding, trnH-psbA is most helpful for phylogenetic analyses, and matK may not work as a universal barcoding marker.


Asunto(s)
Código de Barras del ADN Taxonómico , Helechos/genética , Bosques , Genes de Plantas , Clima Tropical , Helechos/clasificación , Helechos/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , México , Filogenia , Especificidad de la Especie
10.
Biomolecules ; 11(11)2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34827548

RESUMEN

SARS-CoV-2 contains certain molecules that are related to the presence of immunothrombosis. Here, we review the pathogen and damage-associated molecular patterns. We also study the imbalance of different molecules participating in immunothrombosis, such as tissue factor, factors of the contact system, histones, and the role of cells, such as endothelial cells, platelets, and neutrophil extracellular traps. Regarding the pathogenetic mechanism, we discuss clinical trials, case-control studies, comparative and translational studies, and observational studies of regulatory or inhibitory molecules, more specifically, extracellular DNA and RNA, histones, sensors for RNA and DNA, as well as heparin and heparinoids. Overall, it appears that a network of cells and molecules identified in this axis is simultaneously but differentially affecting patients at different stages of COVID-19, and this is characterized by endothelial damage, microthrombosis, and inflammation.


Asunto(s)
Alarminas , COVID-19/virología , SARS-CoV-2 , Tromboinflamación/virología , Trombosis/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Coagulación Sanguínea , Plaquetas/virología , COVID-19/complicaciones , ADN/metabolismo , Trampas Extracelulares , Heparina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Neuropilina-1/metabolismo , ARN/metabolismo , Transducción de Señal , Trombina/metabolismo , Tromboplastina/metabolismo , Trombosis/complicaciones
11.
Mol Cell Biochem ; 476(10): 3815-3825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34110554

RESUMEN

Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.


Asunto(s)
Anticoagulantes/uso terapéutico , COVID-19/patología , Enfermedad de Chagas/patología , Heparitina Sulfato/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/patología , Plaquetas/inmunología , COVID-19/inmunología , Enfermedad de Chagas/inmunología , Activación de Complemento/inmunología , Endotelio/patología , Humanos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Activación Plaquetaria/inmunología , SARS-CoV-2/inmunología , Trypanosoma cruzi/inmunología
12.
Brain Inj ; 35(7): 842-849, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33678100

RESUMEN

Background: Patients in intensive care units with traumatic brain injuries (TBI) frequently present acid-base abnormalities and coagulability disorders, which complicate their condition.Objective: To identify protonation through in silico simulations of molecules involved in the process of coagulation in standard laboratory tests.Materials and methods: Ten patients with TBI were selected from the intensive care unit in addition to ten "healthy control subjects", and another nine patients as "disease control subjects"; the latter being a comparative group, corresponding to subjects with diabetes mellitus 2 (DM2). Fibrinogen, FVII, FVIII, FIX, FX, and D-dimer in the presence of acidification were evaluated in 20 healthy subjects in order to compare clinical results with molecular dynamics (MD), and to explain proton interactions and coagulation molecules.Results: The TBI group presented a slight, non-significant increase in D-dimer; but this was not present in "disease control subjects". Levels of fibrinogen, FVII, FIX, FX, and D-dimer were affected in the presence of acidification. We observed that various specific residues of coagulation factors "trap" ions.Conclusion: Protonation of tissue factor and factor VIIa may favor anticoagulant mechanisms, and protonation does not affect ligand binding sites of GPIIb/IIIa (PAC1) suggesting other causes for the low affinity to PAC1.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Protones , Coagulación Sanguínea , Lesiones Traumáticas del Encéfalo/complicaciones , Humanos , Simulación de Dinámica Molecular
13.
J Med Virol ; 93(4): 2099-2114, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33049069

RESUMEN

The genomic sequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide are publicly available and are derived from studies due to the increase in the number of cases. The importance of study of mutations is related to the possible virulence and diagnosis of SARS-CoV-2. To identify circulating mutations present in SARS-CoV-2 genomic sequences in Mexico, Belize, and Guatemala to find out if the same strain spread to the south, and analyze the specificity of the primers used for diagnosis in these samples. Twenty three complete SARS-CoV-2 genomic sequences, available in the GISAID database from May 8 to September 11, 2020 were analyzed and aligned versus the genomic sequence reported in Wuhan, China (NC_045512.2), using Clustal Omega. Open reading frames were translated using the ExPASy Translate Tool and UCSF Chimera (v.1.12) for amino acid substitutions analysis. Finally, the sequences were aligned versus primers used in the diagnosis of COVID-19. One hundred and eighty seven distinct variants were identified, of which 102 are missense, 66 synonymous and 19 noncoding. P4715L and P5828L substitutions in replicase polyprotein were found, as well as D614G in spike protein and L84S in ORF8 in Mexico, Belize, and Guatemala. The primers design by CDC of United States showed a positive E value. The genomic sequences of SARS-CoV-2 in Mexico, Belize, and Guatemala present similar mutations related to a virulent strain of greater infectivity, which could mean a greater capacity for inclusion in the host genome and be related to an increased spread of the virus in these countries, furthermore, its diagnosis would be affected.


Asunto(s)
COVID-19/virología , Genoma Viral , Mutación , SARS-CoV-2/genética , Belice , COVID-19/diagnóstico , Cartilla de ADN , Guatemala , Humanos , México , Sistemas de Lectura Abierta , Reacción en Cadena de la Polimerasa
14.
Front Immunol ; 11: 555414, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329514

RESUMEN

It is generally understood that the entry of semen into the female reproductive tract provokes molecular and cellular changes facilitating conception and pregnancy. We show a broader picture of the participation of prostaglandins in the fertilization, implantation and maintenance of the embryo. A large number of cells and molecules are related to signaling networks, which regulate tolerance to implantation and maintenance of the embryo and fetus. In this work, many of those cells and molecules are analyzed. We focus on platelets, polymorphonuclear leukocytes, and group 2 innate lymphoid cells involved in embryo tolerance in order to have a wider view of how prostaglandins participate. The combination of platelets and neutrophil extracellular traps (Nets), uterine innate lymphoid cells (uILC), Treg cells, NK cells, and sex hormones have an important function in immunological tolerance. In both animals and humans, the functions of these cells can be regulated by prostaglandins and soluble factors in seminal plasma to achieve an immunological balance, which maintains fetal-maternal tolerance. Prostaglandins, such as PGI2 and PGE2, play an important role in the suppression of the previously mentioned cells. PGI2 inhibits platelet aggregation, in addition to IL-5 and IL-13 expression in ILC2, and PGE2 inhibits some neutrophil functions, such as chemotaxis and migration processes, leukotriene B4 (LTB4) biosynthesis, ROS production, and the formation of extracellular traps, which could help prevent trophoblast injury and fetal loss. The implications are related to fertility in female when seminal fluid is deposited in the vagina or uterus.


Asunto(s)
Desarrollo Embrionario/genética , Desarrollo Embrionario/inmunología , Tolerancia Inmunológica , Prostaglandinas/metabolismo , Animales , Plaquetas/inmunología , Plaquetas/metabolismo , Embrión de Mamíferos , Femenino , Fertilización , Genitales Femeninos , Humanos , Inmunidad Innata , Linfocitos/inmunología , Linfocitos/metabolismo , Intercambio Materno-Fetal/inmunología , Embarazo , Semen , Transducción de Señal
15.
Med Hypotheses ; 144: 110296, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33254487

RESUMEN

The factors that may contribute to a COVID-19 patient remaining in the asymptomatic stage, or to the infection evolving into the more serious stages are examined. In particular, we refer to the TMPRSS2 expression profile, balance of androgen and estrogen, blood group-A and/or B, nonsynonymous mutations in ORF3, and proteins NS7b and NS8 in SARS-CoV-2. Also, we review other factors related to the susceptibility and pathogenicity of SARS-CoV-2.


Asunto(s)
Infecciones Asintomáticas , COVID-19/genética , Predisposición Genética a la Enfermedad , SARS-CoV-2 , Serina Endopeptidasas/genética , Alelos , Andrógenos/metabolismo , Enzima Convertidora de Angiotensina 2/genética , COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus , Exoma , Femenino , Perfilación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Masculino , Modelos Teóricos , Mutación , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , Proteínas no Estructurales Virales/genética , Vitamina D/análogos & derivados , Vitamina D/metabolismo
16.
Molecules ; 25(7)2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32276317

RESUMEN

The presence of isoforms of ß-glucosidase has been reported in some grasses such as sorghum, rice and maize. This work aims to extract and characterize isoform II in ß-glucosidase from S. edule. A crude extract was prepared without buffer solution and adjusted to pH 4.6. Contaminating proteins were precipitated at 4 °C for 24 h. The supernatant was purified by chromatography on carboxymethyl cellulose (CMC) column, molecular exclusion on Sephacryl S-200HR, and exchange anionic on QFF column. Electrophoretic analyzes revealed a purified enzyme with aggregating molecular complex on SDS-PAGE, Native-PAGE, and AU-PAGE. Twelve peptides fragments were identified by nano liquid chromatography-tandem mass spectrometry (nano LC-ESI-MS/MS), which presented as 61% identical to Cucurbita moschata ß-glucosidase and 55.74% identical to ß-glucosidase from Cucumis sativus, another Cucurbitaceous member. The relative masses which contained 39% hydrophobic amino acids ranged from 982.49 to 2,781.26. The enzyme showed a specificity to ß-d-glucose with a Km of 4.59 mM, a Vmax value of 104.3 µM∙min-1 and a kcat of 10,087 µM∙min-1 using p-nitrophenyl-ß-D-glucopyranoside. The presence of molecular aggregates can be attributed to non-polar amino acids. This property is not mediated by a ß-glucosidase aggregating factor (BGAF) as in grasses (maize and sorghum). The role of these aggregates is discussed.


Asunto(s)
Cucurbitaceae/enzimología , Agregado de Proteínas , beta-Glucosidasa/metabolismo , Secuencia de Aminoácidos , Aniones , Cationes , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Isoenzimas/química , Isoenzimas/aislamiento & purificación , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Peso Molecular , Péptidos/química , Especificidad por Sustrato , beta-Glucosidasa/química , beta-Glucosidasa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA