Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 13(1): 6168, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36257965

RESUMEN

Actively dividing cells, including some cancers, rely on aerobic glycolysis rather than oxidative phosphorylation to generate energy, a phenomenon termed the Warburg effect. Constitutive activation of the Hypoxia Inducible Factor (HIF-1), a transcription factor known for mediating an adaptive response to oxygen deprivation (hypoxia), is a hallmark of the Warburg effect. HIF-1 is thought to promote glycolysis and suppress oxidative phosphorylation. Here, we instead show that HIF-1 can promote gluconeogenesis. Using a multiomics approach, we reveal the genomic, transcriptomic, and metabolomic landscapes regulated by constitutively active HIF-1 in C. elegans. We use RNA-seq and ChIP-seq under aerobic conditions to analyze mutants lacking EGL-9, a key negative regulator of HIF-1. We integrate these approaches to identify over two hundred genes directly and functionally upregulated by HIF-1, including the PEP carboxykinase PCK-1, a rate-limiting mediator of gluconeogenesis. This activation of PCK-1 by HIF-1 promotes survival in response to both oxidative and hypoxic stress. Our work identifies functional direct targets of HIF-1 in vivo, comprehensively describing the metabolome induced by HIF-1 activation in an organism.


Asunto(s)
Caenorhabditis elegans , Gluconeogénesis , Animales , Caenorhabditis elegans/genética , Gluconeogénesis/genética , Factores de Transcripción/genética , Hipoxia de la Célula , Hipoxia/genética , Oxígeno , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética
3.
EMBO Rep ; 22(3): e51063, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33470040

RESUMEN

Metazoans use protein homeostasis (proteostasis) pathways to respond to adverse physiological conditions, changing environment, and aging. The nervous system regulates proteostasis in different tissues, but the mechanism is not understood. Here, we show that Caenorhabditis elegans employs biogenic amine neurotransmitters to regulate ubiquitin proteasome system (UPS) proteostasis in epithelia. Mutants for biogenic amine synthesis show decreased poly-ubiquitination and turnover of a GFP-based UPS substrate. Using RNA-seq and mass spectrometry, we found that biogenic amines promote eicosanoid production from poly-unsaturated fats (PUFAs) by regulating expression of cytochrome P450 monooxygenases. Mutants for one of these P450s share the same UPS phenotype observed in biogenic amine mutants. The production of n-6 eicosanoids is required for UPS substrate turnover, whereas accumulation of n-6 eicosanoids accelerates turnover. Our results suggest that sensory neurons secrete biogenic amines to modulate lipid signaling, which in turn activates stress response pathways to maintain UPS proteostasis.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteostasis , Animales , Aminas Biogénicas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neurotransmisores
4.
EMBO J ; 35(17): 1885-901, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27261197

RESUMEN

Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.


Asunto(s)
Caenorhabditis elegans/fisiología , Dopaminérgicos/metabolismo , Neuronas Dopaminérgicas/fisiología , Células Epiteliales/metabolismo , Homeostasis , Mecanorreceptores/fisiología , Proteínas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Células Epiteliales/efectos de los fármacos , Pseudomonas aeruginosa/inmunología , Receptores de Dopamina D1/metabolismo , Transducción de Señal , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA