Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Med Chem Lett ; 103: 129690, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447786

RESUMEN

Autotaxin is a secreted lysophospholipase D which is a member of the ectonucleotide pyrophosphatase/phosphodiesterase family converting extracellular lysophosphatidylcholine and other non-choline lysophospholipids, such as lysophosphatidylethanolamine and lysophosphatidylserine, to the lipid mediator lysophosphatidic acid. Autotaxin is implicated in various fibroproliferative diseases including interstitial lung diseases, such as idiopathic pulmonary fibrosis and hepatic fibrosis, as well as in cancer. In this study, we present an effort of identifying ATX inhibitors that bind to allosteric ATX binding sites using the Enalos Asclepios KNIME Node. All the available PDB crystal structures of ATX were collected, prepared, and aligned. Visual examination of these structures led to the identification of four crystal structures of human ATX co-crystallized with four known inhibitors. These inhibitors bind to five binding sites with five different binding modes. These five binding sites were thereafter used to virtually screen a compound library of 14,000 compounds to identify molecules that bind to allosteric sites. Based on the binding mode and interactions, the docking score, and the frequency that a compound comes up as a top-ranked among the five binding sites, 24 compounds were selected for in vitro testing. Finally, two compounds emerged with inhibitory activity against ATX in the low micromolar range, while their mode of inhibition and binding pattern were also studied. The two derivatives identified herein can serve as "hits" towards developing novel classes of ATX allosteric inhibitors.


Asunto(s)
Lisofosfolípidos , Neoplasias , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Neoplasias/metabolismo , Sitios de Unión , Sitio Alostérico
2.
Angew Chem Int Ed Engl ; 63(14): e202319157, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339863

RESUMEN

Fibroblasts are key regulators of inflammation, fibrosis, and cancer. Targeting their activation in these complex diseases has emerged as a novel strategy to restore tissue homeostasis. Here, we present a multidisciplinary lead discovery approach to identify and optimize small molecule inhibitors of pathogenic fibroblast activation. The study encompasses medicinal chemistry, molecular phenotyping assays, chemoproteomics, bulk RNA-sequencing analysis, target validation experiments, and chemical absorption, distribution, metabolism, excretion and toxicity (ADMET)/pharmacokinetic (PK)/in vivo evaluation. The parallel synthesis employed for the production of the new benzamide derivatives enabled us to a) pinpoint key structural elements of the scaffold that provide potent fibroblast-deactivating effects in cells, b) discriminate atoms or groups that favor or disfavor a desirable ADMET profile, and c) identify metabolic "hot spots". Furthermore, we report the discovery of the first-in-class inhibitor leads for hypoxia up-regulated protein 1 (HYOU1), a member of the heat shock protein 70 (HSP70) family often associated with cellular stress responses, particularly under hypoxic conditions. Targeting HYOU1 may therefore represent a potentially novel strategy to modulate fibroblast activation and treat chronic inflammatory and fibrotic disorders.


Asunto(s)
Fibroblastos , Inflamación , Humanos , Fibroblastos/metabolismo , Inflamación/metabolismo , Hipoxia/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
3.
Bioorg Med Chem ; 90: 117378, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37336084

RESUMEN

Ηypercholesterolemia/hyperlipidemia in conjunction with oxidative stress and inflammatory processes contribute synergistically to the pathogenesis of atherosclerosis. We hereby evaluated the antiatherosclerotic effect of the multi-target derivative 4-methyl-2-(10H-phenothiazin-3-yl)morpholin-2-ol hydrobromide 1 in apoE-/- mice; compound 1 is a potent antihyperlipidemic agent acting through Squalene Synthase inhibition, while it has exhibited an outstanding antioxidant and anti-inflammatory activity in various experimental animal models. The new analogue was evaluated in terms of its antiatherosclerotic/antioxidant effect in the ApoE-/- transgenic mouse model. Its toxicity profile was also assessed by measuring the levels of four sensitive indicators of liver toxicity. Prolonged administration of 1 in ApoE-/- mice fed with a western-type (wt) diet efficiently reduced the aortic atheromatic lesions, an effect that took place through a cholesterol lowering independent manner. In addition, 1 displayed a significant reduction not only of glucose but also of oxidative stress levels, while it did not cause any toxicity. To the best of our knowledge this is the first time that the antiatherosclerotic effect of a Squalene Synthase inhibitor is studied in this specific atherosclerosis mouse model. As a result, compound 1 may serve as a promising starting point towards developing new bioactive analogues against the onset and subsequent development of atherosclerosis.


Asunto(s)
Aterosclerosis , Farnesil Difosfato Farnesil Transferasa , Ratones , Animales , Escualeno , Aterosclerosis/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Apolipoproteínas E/genética , Ratones Transgénicos , Antioxidantes/farmacología , Ratones Noqueados
4.
JCI Insight ; 8(9)2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37014697

RESUMEN

Synovial fibroblasts (SFs) are key pathogenic drivers in rheumatoid arthritis (RA). Their in vivo activation by TNF is sufficient to orchestrate full arthritic pathogenesis in animal models, and TNF blockade proved efficacious for a high percentage of patients with RA albeit coinducing rare but serious side effects. Aiming to find new potent therapeutics, we applied the L1000CDS2 search engine, to repurpose drugs that could reverse the pathogenic expression signature of arthritogenic human TNF-transgenic (hTNFtg) SFs. We identified a neuroleptic drug, namely amisulpride, which reduced SFs' inflammatory potential while decreasing the clinical score of hTNFtg polyarthritis. Notably, we found that amisulpride function was neither through its known targets dopamine receptors D2 and D3 and serotonin receptor 7 nor through TNF-TNF receptor I binding inhibition. Through a click chemistry approach, potentially novel targets of amisulpride were identified, which were further validated to repress hTNFtg SFs' inflammatory potential ex vivo (Ascc3 and Sec62), while phosphoproteomics analysis revealed that treatment altered important fibroblast activation pathways, such as adhesion. Thus, amisulpride could prove beneficial to patients experiencing RA and the often-accompanying comorbid dysthymia, reducing SF pathogenicity along with its antidepressive activity, serving further as a "lead" compound for the development of novel therapeutics against fibroblast activation.


Asunto(s)
Antipsicóticos , Artritis Reumatoide , Animales , Humanos , Membrana Sinovial/metabolismo , Antipsicóticos/farmacología , Amisulprida/farmacología , Reposicionamiento de Medicamentos , Artritis Reumatoide/metabolismo , Fibroblastos/metabolismo , ADN Helicasas/metabolismo
5.
Eur J Med Chem ; 249: 115130, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36702053

RESUMEN

Robust experimental evidence has highlighted the role of Autotaxin (ATX)/Lysophosphatidic acid (LPA) axis not only in the pathogenesis of chronic inflammatory conditions and especially in fibroproliferative diseases but also in several types of cancer. As a result, different series of substrate-, lipid-based and small-molecule ATX inhibitors have been identified thus far by both academia and pharma. The "crowning achievement" of these drug discovery campaigns was the development and entry of the first-in-class ATX inhibitor (ziritaxestat, GLPG-1690) in advanced clinical trials against idiopathic pulmonary fibrosis. Herein, the potency optimization efforts of a new series of Autotaxin inhibitors, namely 2-substituted-2,6-dihydro-4H-thieno[3,4-c]pyrazol-1-substituted amide, is described using a previously identified novel chemical scaffold as a "hit". The mode of inhibition of the most promising ATX inhibitors was investigated, while their cellular activity, aqueous solubility and cytotoxicity were evaluated. Our pharmacological results were corroborated by chemoinformatic tools (molecular docking and molecular dynamics simulations) deployed, to provide insight into the binding mechanism of the synthesized inhibitors to ATX.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neoplasias , Humanos , Quimioinformática , Enfermedad Crónica , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/metabolismo
6.
J Med Chem ; 65(3): 2471-2496, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35077178

RESUMEN

Novel analogues of C-2-substituted thienopyrimidine-based bisphosphonates (C2-ThP-BPs) are described that are potent inhibitors of the human geranylgeranyl pyrophosphate synthase (hGGPPS). Members of this class of compounds induce target-selective apoptosis of multiple myeloma (MM) cells and exhibit antimyeloma activity in vivo. A key structural element of these inhibitors is a linker moiety that connects their (((2-phenylthieno[2,3-d]pyrimidin-4-yl)amino)methylene)bisphosphonic acid core to various side chains. The structural diversity of this linker moiety, as well as the side chains attached to it, was investigated and found to significantly impact the toxicity of these compounds in MM cells. The most potent inhibitor identified was evaluated in mouse and rat for liver toxicity and systemic exposure, respectively, providing further optimism for the potential value of such compounds as human therapeutics.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Geranilgeranil-Difosfato Geranilgeraniltransferasa/antagonistas & inhibidores , Mieloma Múltiple/tratamiento farmacológico , Pirimidinas/uso terapéutico , Tiofenos/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Femenino , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Humanos , Hígado/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Unión Proteica , Pirimidinas/síntesis química , Pirimidinas/metabolismo , Pirimidinas/toxicidad , Ratas , Saccharomyces cerevisiae/enzimología , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/metabolismo , Tiofenos/toxicidad
7.
Front Immunol ; 12: 687397, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34671341

RESUMEN

Severe COVID-19 is characterized by acute respiratory distress syndrome (ARDS)-like hyperinflammation and endothelial dysfunction, that can lead to respiratory and multi organ failure and death. Interstitial lung diseases (ILD) and pulmonary fibrosis confer an increased risk for severe disease, while a subset of COVID-19-related ARDS surviving patients will develop a fibroproliferative response that can persist post hospitalization. Autotaxin (ATX) is a secreted lysophospholipase D, largely responsible for the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling lysophospholipid with multiple effects in pulmonary and immune cells. In this review, we discuss the similarities of COVID-19, ARDS and ILDs, and suggest ATX as a possible pathologic link and a potential common therapeutic target.


Asunto(s)
COVID-19/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Fibrosis Pulmonar/patología , Síndrome de Dificultad Respiratoria/patología , Antiinflamatorios/uso terapéutico , COVID-19/sangre , Dexametasona/uso terapéutico , Humanos , Pulmón/patología , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/sangre , Fibrosis Pulmonar/sangre , Síndrome de Dificultad Respiratoria/sangre , SARS-CoV-2 , Transducción de Señal/inmunología
8.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977539

RESUMEN

Autotaxin (ATX) is a secreted glycoprotein, widely present in biological fluids, largely responsible for extracellular lysophosphatidic acid (LPA) production. LPA is a bioactive growth-factor-like lysophospholipid that exerts pleiotropic effects in almost all cell types, exerted through at least six G-protein-coupled receptors (LPAR1-6). Increased ATX expression has been detected in different chronic inflammatory diseases, while genetic or pharmacological studies have established ATX as a promising therapeutic target, exemplified by the ongoing phase III clinical trial for idiopathic pulmonary fibrosis. In this report, we employed an in silico drug discovery workflow, aiming at the identification of structurally novel series of ATX inhibitors that would be amenable to further optimization. Towards this end, a virtual screening protocol was applied involving the search into molecular databases for new small molecules potentially binding to ATX. The crystal structure of ATX in complex with a known inhibitor (HA-155) was used as a molecular model docking reference, yielding a priority list of 30 small molecule ATX inhibitors, validated by a well-established enzymatic assay of ATX activity. The two most potent, novel and structurally different compounds were further structurally optimized by deploying further in silico tools, resulting to the overall identification of six new ATX inhibitors that belong to distinct chemical classes than existing inhibitors, expanding the arsenal of chemical scaffolds and allowing further rational design.


Asunto(s)
Bases de Datos de Proteínas , Inhibidores Enzimáticos/química , Hidrolasas Diéster Fosfóricas/química , Bibliotecas de Moléculas Pequeñas , Animales , Enfermedad Crónica , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/enzimología , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Relación Estructura-Actividad
9.
Front Microbiol ; 11: 602803, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33391223

RESUMEN

The single-celled apicomplexan parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria each year. The selection of drug resistance has been a recurring theme over the decades with each new drug that is developed. It is therefore crucial that future generations of drugs are explored to tackle this major public health problem. Cyclic GMP (cGMP) signaling is one of the biochemical pathways that is being explored as a potential target for new antimalarial drugs. It has been shown that this pathway is essential for all of the key developmental stages of the complex malaria parasite life cycle. This gives hope that targeting cGMP signaling might give rise to drugs that treat disease, block its transmission and even prevent the establishment of infection. Here we review previous work that has been carried out to develop and optimize inhibitors of the cGMP-dependent protein kinase (PKG) which is a critical regulator of the malaria parasite life cycle.

10.
J Med Chem ; 62(20): 9217-9235, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31566384

RESUMEN

One of the attractive properties of artemisinins is their extremely fast-killing capability, quickly relieving malaria symptoms. Nevertheless, the unique benefits of these medicines are now compromised by the prolonged parasite clearance times and the increasing frequency of treatment failures, attributed to the increased tolerance of Plasmodium falciparum to artemisinin. This emerging artemisinin resistance threatens to undermine the effectiveness of antimalarial combination therapies. Herein, we describe the medicinal chemistry efforts focused on a cGMP-dependent protein kinase (PKG) inhibitor scaffold, leading to the identification of novel chemical entities with very potent, similar to artemisinins, fast-killing potency against asexual blood stages that cause disease, and activity against gametocyte activation that is required for transmission. Furthermore, we confirm that selective PKG inhibitors have a slow speed of kill, while chemoproteomic analysis suggests for the first time serine/arginine protein kinase 2 (SRPK2) targeting as a novel strategy for developing antimalarial compounds with extremely fast-killing properties.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/química , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Antimaláricos/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Humanos , Concentración 50 Inhibidora , Mutagénesis Sitio-Dirigida , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Solubilidad , Relación Estructura-Actividad , Tiazoles/química
11.
ACS Med Chem Lett ; 10(1): 98-104, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30655954

RESUMEN

Among the causal risk factors directly promoting the development of coronary and peripheral atherosclerosis are reactive oxygen species and elevated low-density lipoprotein plasma levels. We hereby designed new potent squalene synthase (SQS) inhibitors that may simultaneously tackle the oxidative stress induced by lipid peroxidation. Using previously developed morpholine derivatives as a starting point, we conducted extensive structural changes by either substituting or modifying the morpholine ring, aiming at an optimal SQS-antioxidant pharmacological profile. Compounds 2, 3, and 7 emerged as the most potent bifunctional analogues, displaying IC50 values for SQS inhibition of 0.014, 0.16, and 0.51 µΜ, respectively, and further significantly decreasing lipid peroxidation of hepatic microsomal membranes. The aforementioned activities were also confirmed in vivo since the most promising derivative 2 exhibited a remarkable antihyperlipidemic and antioxidant effect. In conclusion, rational drug design accompanied by structure-activity relationship studies led to compounds combining improved antioxidant and antihyperlipidemic activity that may serve as multifunctional agents against atherosclerosis.

12.
Med Res Rev ; 39(3): 976-1013, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30462853

RESUMEN

Several years after its isolation from melanoma cells, an increasing body of experimental evidence has established the involvement of Autotaxin (ATX) in the pathogenesis of several diseases. ATX, an extracellular enzyme responsible for the hydrolysis of lysophosphatidylcholine (LPC) into the bioactive lipid lysophosphatidic acid (LPA), is overexpressed in a variety of human metastatic cancers and is strongly implicated in chronic inflammation and liver toxicity, fibrotic diseases, and thrombosis. Accordingly, the ATX-LPA signaling pathway is considered a tractable target for therapeutic intervention substantiated by the multitude of research campaigns that have been successful in identifying ATX inhibitors by both academia and industry. Furthermore, from a therapeutic standpoint, the entry and the so far promising results of the first ATX inhibitor in advanced clinical trials against idiopathic pulmonary fibrosis (IPF) lends support to the viability of this approach, bringing it to the forefront of drug discovery efforts. The present review article aims to provide a comprehensive overview of the most important series of ATX inhibitors developed so far. Special weight is lent to the design, structure activity relationship and mode of binding studies carried out, leading to the identification of advanced leads. The most significant in vitro and in vivo pharmacological results of these advanced leads are also summarized. Lastly, the development of the first ATX inhibitor entered in clinical trials accompanied by its phase 1 and 2a clinical trial data is disclosed.


Asunto(s)
Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Inhibidores Enzimáticos/uso terapéutico , Hidrolasas Diéster Fosfóricas/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Investigación Biomédica Traslacional , Animales , Humanos , Hidrolasas Diéster Fosfóricas/química
13.
Bioorg Med Chem ; 26(20): 5547-5554, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30309670

RESUMEN

Lamin A contributes to the structure of nuclei in all mammalian cells and plays an important role in cell division and migration. Mature lamin A is derived from a farnesylated precursor protein, known as prelamin A, which undergoes post-translational cleavage catalyzed by the zinc metalloprotease STE24 (ZPMSTE24). Accumulation of farnesylated prelamin A in the nuclear envelope compromises cell division, impairs mitosis and induces an increased expression of inflammatory gene products. ZMPSTE24 has been proposed as a potential therapeutic target in oncology. A library of peptidomimetic compounds were synthesized and screened for their ability to induce accumulation of prelamin A in cancer cells and block cell migration in pancreatic ductal adenocarcinoma cells. The results of this study suggest that inhibitors of lamin A maturation may interfere with cell migration, the biological process required for cancer metastasis.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Movimiento Celular/efectos de los fármacos , Lamina Tipo A/metabolismo , Peptidomiméticos/química , Peptidomiméticos/farmacología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Antineoplásicos/síntesis química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Humanos , Proteínas de la Membrana/metabolismo , Metaloendopeptidasas/metabolismo , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Peptidomiméticos/síntesis química , Ácidos Fosfínicos/síntesis química , Ácidos Fosfínicos/química , Ácidos Fosfínicos/farmacología
14.
Eur J Med Chem ; 138: 748-760, 2017 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28728107

RESUMEN

For the treatment of multifactorial and complex diseases, it has become increasingly apparent that compounds acting at multiple targets often deliver superior efficacy compared to compounds with high specificity for only a single target. Based on previous studies demonstrating the important antioxidant and anti-hyperlipidemic effect of morpholine and 1,4-benzo(x/thi)azine derivatives (A-E), we hereby present the design, synthesis and pharmacological evaluation of novel dual-acting molecules as a therapeutic approach for atherosclerosis. Analogues 1-10 were rationally designed through structural modifications of their parent compounds (A-E) in order for structure-activity relationship studies to be carried out. Most compounds showed a significant inhibition against Squalene Synthase activity exhibiting at the same time a very potent multimodal antioxidant (against lipid peroxidation and as free-radical scavengers) effect, thus bringing to light the 2-aryl-1,4-benzo(x/thia)zin-2-ol scaffold as an outstanding pharmacophore for the design of potent antioxidants. Finally, the replacement of the octahydro-1,4-benzoxazine moiety of lead compound D with its respective 1,4-benzothiazine (compound 4), although conserved (anti-hypercholesterolemic) or even improved (anti-hyperlipidemic) activity, did not preserve the anti-diabetic effect of D.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Hipolipemiantes/farmacología , Animales , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Diabetes Mellitus Tipo 2/inducido químicamente , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Farnesil Difosfato Farnesil Transferasa/metabolismo , Humanos , Hipolipemiantes/síntesis química , Hipolipemiantes/química , Masculino , Ratones , Ratones Pelados , Estructura Molecular , Morfolinas/síntesis química , Morfolinas/química , Morfolinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas , Relación Estructura-Actividad , Tiazinas/síntesis química , Tiazinas/química , Tiazinas/farmacología
15.
J Med Chem ; 60(5): 2119-2134, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28208018

RESUMEN

The human farnesyl pyrophosphate synthase (hFPPS), a key regulatory enzyme in the mevalonate pathway, catalyzes the biosynthesis of the C-15 isoprenoid farnesyl pyrophosphate (FPP). FPP plays a crucial role in the post-translational prenylation of small GTPases that perform a plethora of cellular functions. Although hFPPS is a well-established therapeutic target for lytic bone diseases, the currently available bisphosphonate drugs exhibit poor cellular uptake and distribution into nonskeletal tissues. Recent drug discovery efforts have focused primarily on allosteric inhibition of hFPPS and the discovery of non-bisphosphonate drugs for potentially treating nonskeletal diseases. Hit-to-lead optimization of a new series of thienopyrimidine-based monosphosphonates (ThP-MPs) led to the identification of analogs with nanomolar potency in inhibiting hFPPS. Their interactions with the allosteric pocket of the enzyme were characterized by crystallography, and the results provide further insight into the pharmacophore requirements for allosteric inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Geraniltranstransferasa/antagonistas & inhibidores , Pirimidinas/farmacología , Descubrimiento de Drogas , Humanos
16.
Curr Med Chem ; 24(12): 1214-1227, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27528055

RESUMEN

In line with our previous studies, novel morpholine and benzoxa(or thia)zine lead compounds have been developed through a rational design that modulate a multiplicity of targets against atherosclerosis. We have evaluated the most promising compounds for their efficiency to a) intercept and scavenge free radicals, b) inhibit the metal ion (Cu2+)- induced LDL oxidation c) act intracellularly as antioxidants in THP-1 monocytes from a leukemic patient and d) inhibit the pro-inflammatory enzymes cyclooxygenase-1 (COX-1) and -2 (COX-2) in vitro. Furthermore, two representative compounds were tested for their potential to decrease lipidemic parameters (TC, LDL and TG) in hyperlipidemic mice. Most derivatives indicated a remarkable antioxidant activity, while at the same time exhibited a significant in vitro anti-inflammatory activity, inhibiting COX-1 or/and COX-2 activity at 20 µΜ. In addition, after their long-term administration, compounds 6 and 8 afforded considerable activity in a chronic experimental animal model of hyperlipidemia (after high fat diet administration). The multifunctional pharmacological profile exhibited by the compounds of this study renders them interesting lead compounds for the development of novel agents against atherosclerosis.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Aterosclerosis/tratamiento farmacológico , Hipolipemiantes/farmacología , Animales , Antiinflamatorios no Esteroideos/química , Antioxidantes/química , Benzoxazinas/química , Benzoxazinas/farmacología , Humanos , Hipolipemiantes/química , Estructura Molecular , Morfolinas/química , Morfolinas/farmacología , Tiazinas/química , Tiazinas/farmacología
17.
Bioorg Med Chem ; 23(21): 7015-23, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26433631

RESUMEN

Drugs affecting more than one target could result in a more efficient treatment of multifactorial diseases as well as fewer safety concerns, compared to a one-drug one-target approach. Within our continued efforts towards the design of multifunctional molecules against atherosclerosis, we hereby report the synthesis of 17 new morpholine derivatives which structurally vary in terms of the aromatic substitution on the morpholine ring. These derivatives simultaneously suppress cholesterol biosynthesis through SQS inhibition (IC50 values of the most active compounds are between 0.7 and 5.5 µM) while exhibiting a significant protection of hepatic microsomal membranes against lipid peroxidation (with IC50 values for the most active compounds being between 73 and 200 µM). Further evaluation of these compounds was accomplished in vivo in an animal model of acute experimental hyperlipidemia, where it was observed that compounds reduced the examined lipidemic parameters (TC, TG and LDL) by 15-80%. In order to examine the mode of binding of these molecules in the active catalytic site of SQS, we also performed docking simulation studies. Our results indicate that some of the new compounds can be considered interesting structures in the search for new multifunctional agents of potential application in atherosclerosis.


Asunto(s)
Antioxidantes/química , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Hipolipemiantes/química , Morfolinas/química , Animales , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Sitios de Unión , Dominio Catalítico , Modelos Animales de Enfermedad , Farnesil Difosfato Farnesil Transferasa/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/patología , Hipolipemiantes/metabolismo , Hipolipemiantes/uso terapéutico , Concentración 50 Inhibidora , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Morfolinas/metabolismo , Morfolinas/uso terapéutico , Ratas
18.
Bioorg Med Chem ; 23(3): 390-400, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25577709

RESUMEN

Excessive levels of reactive oxygen species (ROS) result in numerous pathologies including muscle disorders. In essence, skeletal muscle performance of daily activities can be severely affected by the redox imbalances occurring after muscular injuries, surgery, atrophy due to immobilization, dystrophy or eccentric muscle contraction. Therefore, research on the potential beneficial impact of antioxidants is of outmost importance. In this context, aiming at further exploring the mechanisms of action of our newly synthesized antioxidant compounds (AK1 and AK2) in a skeletal muscle experimental setting, we initially investigated their scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and subsequently assessed their effect on the viability of C2 skeletal myoblasts in the presence of two pro-oxidants: H2O2 and curcumin (MTT assay). Interestingly, while both compounds reversed the detrimental effect of H2O2, only AK2 was cytoprotective in curcumin-treated C2 cells. We next confirmed the immediate activation of extracellular signal-regulated kinases (ERKs) and the more delayed activation profile of c-Jun NH2-terminal kinases (JNKs) in C2 skeletal myoblasts exposed to curcumin, by Western blotting. In correlation with the aforementioned results, only AK2 blocked the curcumin-induced activation of JNKs pathway. Furthermore, JNKs were revealed to mediate curcumin-induced apoptosis in C2 cells and only AK2 to effectively suppress it (by detecting its effect on poly(ADP-ribose) polymerase fragmentation). Overall, we have shown that two similar in structure novel antioxidants confer differential effects on C2 skeletal myoblasts viability under oxidative stress conditions. This result may be attributed to these antioxidants respective diverse mode of interaction with the signaling effectors involved in the observed responses. Future studies should further evaluate the mechanism of action of these compounds in order to support their potential application in therapeutic protocols against ROS-related muscle disorders.


Asunto(s)
Antioxidantes/farmacología , Curcumina/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mioblastos Esqueléticos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Ratones , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
19.
Front Chem ; 2: 50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25101260

RESUMEN

In the human body, the complex biochemical network known as the mevalonate pathway is responsible for the biosynthesis of all isoprenoids, which consists of a vast array of metabolites that are vital for proper cellular functions. Two key isoprenoids, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) are responsible for the post-translational prenylation of small GTP-binding proteins, and serve as the biosynthetic precursors to numerous other biomolecules. The down-stream metabolite of FPP and GGPP is squalene, the precursor to steroids, bile acids, lipoproteins, and vitamin D. In the past, interest in prenyl synthase inhibitors focused mainly on the role of the FPP in lytic bone diseases. More recently pre-clinical and clinical studies have strongly implicated high levels of protein prenylation in a plethora of human diseases, including non-skeletal cancers, the progression of neurodegenerative diseases and cardiovascular diseases. In this review, we focus mainly on the potential therapeutic value of down-regulating the biosynthesis of FPP, GGPP, and squalene. We summarize the most recent drug discovery efforts and the structural data available that support the current on-going studies.

20.
J Med Chem ; 57(6): 2568-81, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24568631

RESUMEN

Because atherosclerosis is an inflammatory process involving a series of pathological events such as dyslipidemia, oxidative stress, and blood clotting mechanisms, we hereby report the synthesis and evaluation of novel compounds in which antioxidant, anti-inflammatory, and squalene synthase (SQS) inhibitory/hypolipidemic activities are combined in simple molecules through design. The coupling of two different pharmacophores afforded compounds 1-12, whose biological profile was markedly improved compared to those of parent lead structures (i.e., the hypolipidemic 2-hydroxy-2-aryl-(benzo)oxa(or thia)zine and the antioxidant phenothiazine). Most derivatives strongly inhibited in vitro microsomal lipid and LDL peroxidation, exhibiting potent free-radical scavenging activity. They further significantly inhibited SQS activity and showed remarkable antidyslipidemic activity in vivo in animal models of acute and high-fat-induced hyperlipidemia. Finally, several compounds showed anti-inflammatory activity in vitro, inhibiting cycloxygenase (COX-1/2) activity. The multimodal properties of the new compounds and especially their combined antioxidant/SQS/COX inhibitory activity render them interesting lead compounds for further evaluation against atherosclerosis.


Asunto(s)
Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/síntesis química , Antioxidantes/farmacología , Hipolipemiantes/síntesis química , Hipolipemiantes/farmacología , Fenotiazinas/síntesis química , Fenotiazinas/farmacología , Animales , Aterosclerosis/tratamiento farmacológico , Compuestos de Bifenilo , Carragenina , Colesterol en la Dieta/farmacología , Inhibidores de la Ciclooxigenasa/síntesis química , Inhibidores de la Ciclooxigenasa/farmacología , Dieta Alta en Grasa , Diseño de Fármacos , Edema/inducido químicamente , Edema/prevención & control , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Farnesil Difosfato Farnesil Transferasa/antagonistas & inhibidores , Técnicas In Vitro , Indicadores y Reactivos , Peroxidación de Lípido/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Picratos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA