Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999072

RESUMEN

The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.


Asunto(s)
Antibacterianos , Espectrofotometría Atómica , Antibacterianos/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Espectrofotometría Atómica/métodos
2.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34638473

RESUMEN

Plants continue to provide unlimited pharmacologically active compounds that can treat various illnesses, including cancer. The Solanaceae family, besides providing economically important food plants, such as potatoes and tomatoes, has been exploited extensively in folk medicine, as it provides an array of bioactive compounds. Many studies have demonstrated the anticancer potency of some of the compounds, but the corresponding molecular targets are not well defined. However, advances in molecular cell biology and in silico modelling have made it possible to dissect some of the underlying mechanisms. By reviewing the literature over the last five years, we provide an update on anticancer mechanisms associated with phytochemicals isolated from species in the Solanaceae plant family. These mechanisms are conveniently grouped into cell cycle arrest, transcription regulation, modulation of autophagy, inhibition of signalling pathways, suppression of metabolic enzymes, and membrane disruption. The majority of the bioactive compounds exert their antiproliferative effects by inhibiting diverse signalling pathways, as well as arresting the cell cycle. Furthermore, some of the phytochemicals are effective against more than one cancer type. Therefore, understanding these mechanisms provides paths for future formulation of novel anticancer drugs, as well as highlighting potential areas of research.

3.
Bioinorg Chem Appl ; 2021: 5563209, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34093696

RESUMEN

A new hexadentate 2-picolyl-polypyridyl-based ligand (4, 4'-(butane-1, 4-diylbis(oxy))bis(N, N-bis(pyridin-2-ylmethyl)aniline)) (2BUT) (1) and its corresponding Ru(II/III) complexes were synthesized and characterized, followed by assessment of their possible bioactive properties towards drug-resistant and non-drug-resistant bacteria. Spectroscopic characterization of the ligand was done using proton NMR, FTIR, and ESI-MS, which showed that the ligand was successfully synthesized. The Ru(II/III) complexes were characterized by FTIR, UV/Vis, elemental analysis, proton NMR, ESI-MS, and magnetic susceptibility studies. The analysis of ESI-MS data of the complexes showed that they were successfully synthesized. Empirical formulae derived from elemental analysis of the complexes also indicated successful synthesis and relative purity of the complexes. The important functional groups of the ligands could be observed after complexation using FTIR. Magnetic susceptibility data and electronic spectra indicated that both complexes adopt a low spin configuration. The disc diffusion assay was used to test the compounds for antibiotic activity on two bacteria species and their drug-resistant counterparts. The compounds displayed antibiotic activity towards the two non-drug-resistant bacteria. As for the drug-resistant organisms, only [Ru2(2BUT)(DMF)2(DPA)2](BH4)4 3 and 2, 2-dipyridylamine inhibited the growth of MRSA. Gel electrophoresis DNA cleavage studies showed that the ligands had no DNA cleaving properties while all the complexes denatured the bacterial DNA. Therefore, the complexes may have DNA nuclease activity towards the bacterial genomic material.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA