Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723001

RESUMEN

To identify a biomarker for the early diagnosis of enzootic bovine leukosis (EBL) caused by bovine leukemia virus (BLV), we investigated the expression of a microRNA, bta-miR-375, in cattle serum. Using quantitative reverse-transcriptase PCR analysis, we measured bta-miR-375 levels in 27 samples from cattle with EBL (EBL cattle), 45 samples from animals infected with BLV but showing no clinical signs (NS cattle), and 30 samples from cattle uninfected with BLV (BLV negative cattle). In this study, we also compared the kinetics of bta-miR-375 with those of the conventional biomarkers of proviral load (PVL), lactate dehydrogenase (LDH), and thymidine kinase (TK) from the no-clinical-sign phase until EBL onset in three BLV-infected Japanese black (JB) cattle. Bta-miR-375 expression was higher in NS cattle than in BLV negative cattle (P < 0.05) and greater in EBL cattle than in BLV negative and NS cattle (P < 0.0001 for both comparisons). Receiver operating characteristic curves demonstrated that bta-miR-375 levels distinguished EBL cattle from NS cattle with high sensitivity and specificity. In NS cattle, bta-miR-375 expression was increased as early as at 2 months before EBL onset-earlier than the expression of PVL, TK, or LDH isoenzymes 2 and 3. These results suggest that serum miR-375 is a promising biomarker for the early diagnosis of EBL.


Asunto(s)
Biomarcadores , Diagnóstico Precoz , Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , MicroARNs , Animales , Bovinos , Leucosis Bovina Enzoótica/diagnóstico , Leucosis Bovina Enzoótica/sangre , Leucosis Bovina Enzoótica/virología , MicroARNs/sangre , MicroARNs/genética , Biomarcadores/sangre , Virus de la Leucemia Bovina/genética , Curva ROC , L-Lactato Deshidrogenasa/sangre
2.
Viruses ; 14(6)2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35746654

RESUMEN

Bovine leukemia virus (BLV) is an oncogenic virus belonging to the genus Deltaretrovirus and is the causative agent of enzootic bovine leukosis. Proviral load (PVL) determined by real-time quantitative PCR (qPCR) is now widely used as an indicator of not only BLV infection, but also BLV disease progression. To interpret PVLs determined by different qPCRs used in Japan, we compared a chimeric cycling probe-based qPCR, CY415, targeting the BLV tax region; a TaqMan probe-based qPCR, RC202, targeting the BLV pol region; and a TaqMan probe-based qPCR, CoCoMo, targeting the BLV long terminal repeat (LTR) region. Whole-blood samples collected from 317 naturally BLV-infected cattle (165 Holstein-Friesian and 152 Japanese Black) and tumor tissue samples collected from 32 cattle at a meat inspection center were used. The PVLs determined by each qPCR were strongly correlated. However, the PVL and the proportion of BLV-infected cells determined by RC202 or CoCoMo were significantly higher than those determined by CY415. Genetic analysis of three tumor tissue samples revealed that LTR region mutations or a deletion affected the PVL determined by CoCoMo. These results suggest that the TaqMan-based RC202 or CoCoMo qPCR is better than CY415 for BLV PVL analysis. However, qPCR target region mutations were not rare in tumors and could hamper PVL analysis by using qPCR.


Asunto(s)
Leucosis Bovina Enzoótica , Virus de la Leucemia Bovina , Animales , Bovinos , Japón , Virus de la Leucemia Bovina/genética , Provirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Carga Viral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA