Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Infect Immun ; 88(1)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31611274

RESUMEN

Food allergy is a life-threatening response to specific foods, and microbiota imbalance (dysbiosis) in gut is considered a cause of this disease. Meanwhile, the host immune response also plays an important role in the disease. Notably, interleukin 33 (IL-33) released from damaged or necrotic intestinal epithelial cells facilitates IL-2-producing CD4 helper T (Th2) responses. However, causal relationships between the gut and oral dysbiosis and food allergy remain unknown. In this study, we analyzed effects of gut and oral dysbiosis on development of food allergy. A murine model of food allergy was established via ovalbumin (OVA) injection in BALB/c mice. Viable fecal bacteria were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). il33 expression in colon-26 mouse colon cells stimulated by isolated fecal bacteria was quantified by real-time PCR. Intestinal T cells from the mice were analyzed by flow cytometry. Salivary IgA levels were quantified by enzyme-linked immunosorbent assay (ELISA), and IgA-bound oral bacteria were detected by flow cytometry. Among fecal bacteria, the abundance of Citrobacter sp. increased in the feces of allergic mice and induced il33 expression in colon-26 cells. Orally administered Citrobacter koseri JCM1658 exacerbated systemic allergic symptoms and reduced intestinal Th17 cells. Salivary IgA and IgA-bound oral bacteria increased in the allergic mice. Based on the results described above, food allergy induced both gut and oral dysbiosis. Citrobacter sp. aggravated allergy symptoms by inducing IL-33 release from intestinal epithelial cells.


Asunto(s)
Disbiosis , Hipersensibilidad a los Alimentos/complicaciones , Tracto Gastrointestinal/microbiología , Inmunoglobulina A/metabolismo , Factores Inmunológicos/metabolismo , Microbiota/efectos de los fármacos , Boca/microbiología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Ratones Endogámicos BALB C
2.
Biochem Biophys Res Commun ; 485(2): 414-420, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28209510

RESUMEN

Melatonin produced by the pineal gland suppresses inflammatory responses in innate immune cells. However, the mechanism of how melatonin affects inflammatory gene regulation remains unclear. Here we performed comprehensive microarray analysis combined with transcription factor binding site (TFBS) analysis using LPS-induced mouse macrophages to investigate the effect of melatonin treatment. The results showed that melatonin preferentially downregulated interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) related signaling. The results also showed that melatonin strongly suppressed virus infection related gene expression. Furthermore, TFBS analysis implicated that melatonin downregulated the binding activity of hypoxia inducible factors (HIFs), following destabilizing actin cytoskeleton which are indispensable for induction of the TRIF-dependent signaling pathway. Indeed, it was demonstrated that melatonin treatment caused impaired phagocytosis in macrophages. Thus, melatonin regulates inflammatory responses by inhibiting specific subsets of transcription factors (TFs) by disrupting actin dynamics in the macrophage.


Asunto(s)
Actinas/metabolismo , Perfilación de la Expresión Génica/métodos , Macrófagos/efectos de los fármacos , Melatonina/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Antioxidantes/farmacología , Análisis por Conglomerados , Citocinas/genética , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ontología de Genes , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Microscopía Fluorescente , Polimerizacion/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
3.
Biochem Biophys Res Commun ; 485(2): 461-467, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202416

RESUMEN

Oral streptococci including mitis group streptococci are commensal residents and are also the first to colonize the oral cavity. However, various species of these oral streptococci have the potential to invade the host and occasionally lead to severe infectious disease such as cardiovascular diseases. Oral streptococci have close interactions with the host immune system including macrophages at the oral mucosal surface. One notable common trait of oral streptococcus including Streptococcus oralis (S. oralis) is the production of hydrogen peroxide (H2O2). Using a comprehensive microarray approach, we sought to understand the innate immune response profiling affected by H2O2 production from oral streptococci. We compared the gene expression patterns of macrophages infected with S. oralis wild type (WT) and streptococcal pyruvate oxidase knockout (SpxB-KO), a strain that does not produce H2O2. We found that H2O2 from S. oralis suppressed proinflammatory gene expression such as TNF-α, that is induced in response to infection, and activated the cellular stress genes such as Egr-1 in response to oxidative stress. A comparative gene ontology analysis of S. oralis WT and SpxB-KO strains revealed that during infection, down regulated genes were closely related to the processes involved in the host defense reaction and up regulated genes were related with the cellular stress responses. Using qPCR analysis, we also confirmed the same pattern of expression changes such as TNF-α, IL-6 and Egr-1. Furthermore, supernatant from SpxB-KO could not suppress the expression of TNF-α in macrophages stimulated with LPS. These findings suggested that H2O2 production from S. oralis leads to the suppression of inflammatory responses and NF-κB signaling pathways in macrophages as well as the induction of the oxidative stress response. We concluded that streptococcal H2O2 production has the beneficial effects of modulating the innate immune response, thereby stabilizing streptococcal colonization at the mucosal surface and even in the bloodstream leading to cardiovascular disease after invasion, in addition to the commensal role to compete other bacterial species as initial colonizer at oral cavity.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Peróxido de Hidrógeno/metabolismo , Macrófagos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Streptococcus oralis/metabolismo , Células 3T3 , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Western Blotting , Línea Celular , Análisis por Conglomerados , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Ontología de Genes , Interacciones Huésped-Patógeno , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Piruvato Oxidasa/genética , Piruvato Oxidasa/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Streptococcus oralis/genética , Streptococcus oralis/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA