Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Fluids Barriers CNS ; 21(1): 27, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491505

RESUMEN

BACKGROUND: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. METHODS: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. RESULTS: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. CONCLUSIONS: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for studying the role of ABCG2 at the BBB.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Barrera Hematoencefálica , Pez Cebra , Adulto , Animales , Humanos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Células HEK293 , Mamíferos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pez Cebra/metabolismo
2.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328040

RESUMEN

Liver cancer ranks amongst the deadliest cancers. Nerves have emerged as an understudied regulator of tumor progression. The parasympathetic vagus nerve influences systemic immunity via acetylcholine (ACh). Whether cholinergic neuroimmune interactions influence hepatocellular carcinoma (HCC) remains uncertain. Liver denervation via hepatic vagotomy (HV) significantly reduced liver tumor burden, while pharmacological enhancement of parasympathetic tone promoted tumor growth. Cholinergic disruption in Rag1KO mice revealed that cholinergic regulation requires adaptive immunity. Further scRNA-seq and in vitro studies indicated that vagal ACh dampens CD8+ T cell activity via muscarinic ACh receptor (AChR) CHRM3. Depletion of CD8+ T cells abrogated HV outcomes and selective deletion of Chrm3 on CD8 + T cells inhibited liver tumor growth. Beyond tumor-specific outcomes, vagotomy improved cancer-associated fatigue and anxiety-like behavior. As microbiota transplantation from HCC donors was sufficient to impair behavior, we investigated putative microbiota-neuroimmune crosstalk. Tumor, rather than vagotomy, robustly altered fecal bacterial composition, increasing Desulfovibrionales and Clostridial taxa. Strikingly, in tumor-free mice, vagotomy permitted HCC-associated microbiota to activate hepatic CD8+ T cells. These findings reveal that gut bacteria influence behavior and liver anti-tumor immunity via a dynamic and pharmaceutically targetable, vagus-liver axis.

3.
bioRxiv ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37425689

RESUMEN

Background: A principal protective component of the mammalian blood-brain barrier (BBB) is the high expression of the multidrug efflux transporters P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2) on the lumenal surface of endothelial cells. The zebrafish P-gp homolog Abcb4 is expressed at the BBB and phenocopies human P-gp. Comparatively little is known about the four zebrafish homologs of the human ABCG2 gene: abcg2a, abcg2b, abcg2c, and abcg2d. Here we report the functional characterization and brain tissue distribution of zebrafish ABCG2 homologs. Methods: To determine substrates of the transporters, we stably expressed each in HEK-293 cells and performed cytotoxicity and fluorescent efflux assays with known ABCG2 substrates. To assess the expression of transporter homologs, we used a combination of RNAscope in situ hybridization probes and immunohistochemistry to stain paraffin-embedded sections of adult and larval zebrafish. Results: We found Abcg2a had the greatest substrate overlap with ABCG2, and Abcg2d appeared to be the least functionally similar. We identified abcg2a as the only homolog expressed at the adult and larval zebrafish BBB, based on its localization to claudin-5 positive brain vasculature. Conclusions: These results demonstrate the conserved function of zebrafish Abcg2a and suggest that zebrafish may be an appropriate model organism for the studying the role of ABCG2 at the BBB.

4.
ACS Appl Bio Mater ; 6(5): 1960-1969, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37040258

RESUMEN

Wireframe DNA origami can be used to fabricate virus-like particles for a range of biomedical applications, including the delivery of nucleic acid therapeutics. However, the acute toxicity and biodistribution of these wireframe nucleic acid nanoparticles (NANPs) have not been previously characterized in animal models. In the present study, we observed no indications of toxicity in BALB/c mice following a therapeutically relevant dosage of nonmodified DNA-based NANPs via intravenous administration, based on liver and kidney histology, liver and kidney biochemistry, and body weight. Further, the immunotoxicity of these NANPs was minimal, as indicated by blood cell counts and type-I interferon and pro-inflammatory cytokines. In an SJL/J model of autoimmunity, we observed no indications of NANP-mediated DNA-specific antibody response or immune-mediated kidney pathology following the intraperitoneal administration of NANPs. Finally, biodistribution studies revealed that these NANPs accumulate in the liver within one hour, concomitant with substantial renal clearance. Our observations support the continued development of wireframe DNA-based NANPs as next-generation nucleic acid therapeutic delivery platforms.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Ratones , Animales , Distribución Tisular , ADN/química , Ácidos Nucleicos/química , Ácidos Nucleicos/uso terapéutico , Nanopartículas/toxicidad , Nanopartículas/química
5.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909507

RESUMEN

Wireframe DNA origami can be used to fabricate virus-like particles for a range of biomedical applications, including the delivery of nucleic acid therapeutics. However, the acute toxicity and biodistribution of these wireframe nucleic acid nanoparticles (NANPs) have not previously been characterized in animal models. In the present study, we observed no indications of toxicity in BALB/c mice following therapeutically relevant dosage of unmodified DNA-based NANPs via intravenous administration, based on liver and kidney histology, liver biochemistry, and body weight. Further, the immunotoxicity of these NANPs was minimal, as indicated by blood cell counts and type-I interferon and pro-inflammatory cytokines. In an SJL/J model of autoimmunity, we observed no indications of NANP-mediated DNA-specific antibody response or immune-mediated kidney pathology following the intraperitoneal administration of NANPs. Finally, biodistribution studies revealed that these NANPs accumulate in the liver within one hour, concomitant with substantial renal clearance. Our observations support the continued development of wireframe DNA-based NANPs as next-generation nucleic acid therapeutic delivery platforms.

6.
Sci Rep ; 11(1): 24150, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34921178

RESUMEN

Capillary endothelial cells of the human blood-brain barrier (BBB) express high levels of P-glycoprotein (P-gp, encoded by ABCB1) and ABCG2 (encoded by ABCG2). However, little information is available regarding ATP-binding cassette transporters expressed at the zebrafish BBB, which has emerged as a potential model system. We report the characterization and tissue localization of two genes that are similar to ABCB1, zebrafish abcb4 and abcb5. When stably expressed in HEK293 cells, both Abcb4 and Abcb5 conferred resistance to P-gp substrates; however, Abcb5 poorly transported doxorubicin and mitoxantrone compared to zebrafish Abcb4. Additionally, Abcb5 did not transport the fluorescent P-gp probes BODIPY-ethylenediamine or LDS 751, while they were transported by Abcb4. High-throughput screening of 90 human P-gp substrates confirmed that Abcb4 has an overlapping substrate specificity profile with P-gp. In the brain vasculature, RNAscope probes for abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. The abcb4 probe also colocalized with claudin-5 in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, potentially indicating different functions. The data suggest that zebrafish Abcb4 functionally phenocopies P-gp and that the zebrafish may serve as a model to study the role of P-gp at the BBB.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Transporte Biológico Activo , Células HEK293 , Humanos , Especificidad de Órganos , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Cancer Biother Radiopharm ; 36(2): 133-142, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33646017

RESUMEN

Background: Patients with osteoblastic bone metastases are candidates for radium-223 (223RaCl2) therapy and may undergo sodium fluoride-18 (18F-NaF) positron emission tomography-computed tomography imaging to identify bone lesions. 18F-NaF has been shown to predict 223RaCl2 uptake, but intratumor distributions of these two agents remain unclear. In this study, the authors evaluate the spatial distribution and relative uptakes of 18F-NaF and 223RaCl2 in Hu09-H3 human osteosarcoma mouse xenograft tumors at macroscopic and microscopic levels to better quantify their correlation. Materials and Methods: 18F-NaF and 223RaCl2 were co-injected into Hu09-H3 xenograft tumor severe combined immunodeficient mice. Tumor content was determined from in vivo biodistributions and visualized by PET, single photon emission computed tomography, and CT imaging. Intratumor distributions were visualized by quantitative autoradiography of tumor tissue sections and compared to histology of the same or adjacent sections. Results: 18F and 223Ra accumulated in proportional amounts in whole Hu09-H3 tumors (r2 = 0.82) and in microcalcified regions within these tumors (r2 = 0.87). Intratumor distributions of 18F and 223Ra were spatially congruent in these microcalcified regions. Conclusions: 18F-NaF and 223RaCl2 uptake are strongly correlated in heterogeneously distributed microcalcified regions of Hu09-H3 xenograft tumors, and thus, tumor accumulation of 18F is predictive of 223Ra accumulation. Hu09-H3 xenograft tumors appear to possess certain histopathological features found in patients with metastatic bone disease and may be useful in clarifying the relationship between administered 223Ra dose and therapeutic effect.


Asunto(s)
Radio (Elemento)/metabolismo , Fluoruro de Sodio/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Osteoblastos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
PLoS One ; 6(3): e17884, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21437245

RESUMEN

Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.


Asunto(s)
Neoplasias Cerebelosas/patología , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Proteínas Hedgehog/metabolismo , Lesiones Precancerosas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Envejecimiento/patología , Alelos , Animales , Apoptosis , Proliferación Celular , Supervivencia Celular , Neoplasias Cerebelosas/metabolismo , Cerebelo/anomalías , Cerebelo/patología , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neuronas/metabolismo , Neuronas/patología , Receptores Patched , Receptor Patched-1 , Lesiones Precancerosas/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteína con Dedos de Zinc GLI1 , Proteína Gli2 con Dedos de Zinc
9.
PLoS Genet ; 4(10): e1000241, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18974875

RESUMEN

We have characterized the biological functions of the chromatin remodeling protein Bptf (Bromodomain PHD-finger Transcription Factor), the largest subunit of NURF (Nucleosome Remodeling Factor) in a mammal. Bptf mutants manifest growth defects at the post-implantation stage and are reabsorbed by E8.5. Histological analyses of lineage markers show that Bptf(-/-) embryos implant but fail to establish a functional distal visceral endoderm. Microarray analysis at early stages of differentiation has identified Bptf-dependent gene targets including homeobox transcriptions factors and genes essential for the development of ectoderm, mesoderm, and both definitive and visceral endoderm. Differentiation of Bptf(-/-) embryonic stem cell lines into embryoid bodies revealed its requirement for development of mesoderm, endoderm, and ectoderm tissue lineages, and uncovered many genes whose activation or repression are Bptf-dependent. We also provide functional and physical links between the Bptf-containing NURF complex and the Smad transcription factors. These results suggest that Bptf may co-regulate some gene targets of this pathway, which is essential for establishment of the visceral endoderm. We conclude that Bptf likely regulates genes and signaling pathways essential for the development of key tissues of the early mouse embryo.


Asunto(s)
Antígenos Nucleares/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Células Madre Embrionarias/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , Animales , Antígenos Nucleares/genética , Diferenciación Celular , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Endodermo/embriología , Factores de Determinación Derecha-Izquierda/metabolismo , Ratones , Ratones Noqueados , Mutación , Proteínas del Tejido Nervioso/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Smad/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA