Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37392143

RESUMEN

This study compared the effects of different dietary zinc/copper ratios on zinc (Zn) and copper (Cu) metabolism in weaned pigs. One hundred and sixty piglets (7.81 ±â€…0.25 kg; 21 d of age) were used in a completely randomized 2 × 2 factorial design composed with high (H) and low (L) levels of added dietary Zn (100 and 3,000 mg/kg) and dietary Cu (6 and 130 mg/kg). Piglets were slaughtered at 21, 28, 35, and 42 d of age for blood and tissues collection. Serum, jejunum mucosa, liver, and kidney concentrations of Zn and Cu were analyzed as well as tissues mRNA abundance of genes related to their metabolism. Serum and liver Zn concentrations increased at days 28, 35, and 42 in HZn groups compared to pre-treatment levels (day 21; P ≤ 0.01) but for LZn animals, values decreased at days 28, 35, and 42 in liver (P ≤ 0.01) but remained stable vs. day 21 levels in serum (P ≥ 0.37). Serum, jejunum mucosa, liver, and kidney Zn concentrations were greater in HZn groups from day 28 (P ≤ 0.01). In jejunum mucosa, the mRNA expression of ZIP4 was lower in HZn piglets at day 28 (P ≤ 0.01) and at day 42 whereas HCu supplementation increased ZIP4 expression in LZn but not in HZn diets (P = 0.05). For ZNT1, MT3, and MT1, values of relative mRNA expression were greater for HZn animals in jejunum mucosa, liver, and kidney (P ≤ 0.01) from day 28. In kidney (P < 0.01) at day 42, HZn supplementation increased MTs expression in both LCu or HCu groups. Serum and liver Cu concentrations decreased at days 35 and 42 in all treatments compared to day 21 (P ≤ 0.04), except LZnHCu in liver that was not different from day 21 (P ≥ 0.17). Serum Cu concentrations were lower in HZn and greater in HCu groups at days 35 and 42 (P ≤ 0.01) whereas hepatic Cu was reduced by HZn diets in both LCu and HCu groups at days 35 and 42 (P ≤ 0.01). Jejunum Cu concentrations were increased by HCu diets in HZn but not in LZn groups at days 28 and 42 (P ≤ 0.04). Renal Cu concentrations were greater in HZn groups at day 28 (P < 0.01) whereas at day 42 HZn diets increased Cu values in both LCu and HCu groups (P ≤ 0.01). The expression of ATP7A in kidney at day 42 was greater for HZn groups (P = 0.02). In conclusion, high dietary Zn levels were not efficiently regulated by homeostatic mechanisms and significantly impaired Cu homeostasis. Low dietary Zn/Cu ratios allow a more efficient regulation of the metabolism of these trace minerals in post-weaning piglets. The current official recommendations for Zn and Cu to post-weaning piglets apparently do not fulfill their requirements.


Zinc oxide and copper sulfate are commonly used as growth promoters and alternatives to antibiotics to prevent diarrhea in weaned piglets but their use in post-weaning pigs diets has been challenged due to environmental issues and concerns related to bacterial resistance to antibiotics and heavy metals. Recently, it was reported that high dietary zinc levels interfere with copper status and may be detrimental to post-weaning piglets' health. In fact, the optimal dietary zinc/copper ratios need to be determined. Therefore, this experiment was conducted to evaluate the effects of different dietary zinc/copper ratios (3,000/130, 3,000/6, 100/130, and 100/6 mg/kg) on zinc and copper metabolism in weaned piglets. This study demonstrated that high dietary zinc/copper ratios impaired zinc and copper homeostasis but also that 100 mg/kg of dietary zinc and 6 mg/kg of dietary copper are apparently not sufficient to fulfill the piglets' requirements during the first weeks post-weaning.


Asunto(s)
Oligoelementos , Zinc , Porcinos , Animales , Zinc/farmacología , Cobre/farmacología , Dieta/veterinaria , Minerales , ARN Mensajero/genética , ARN Mensajero/metabolismo , Suplementos Dietéticos
2.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36800314

RESUMEN

This study compared different dietary zinc oxide (ZnO) levels on zinc (Zn) and copper (Cu) metabolism in weaned pigs. One hundred twenty weaned piglets (7.96 ± 1.17 kg; 21 d of age) were used in a completely randomized 3 × 4 factorial design composed with three levels of dietary ZnO at 100 (100Zn), 1,000 (1,000Zn), or 3,000 mg/kg (3,000Zn) and four ages at slaughter at 21 (day 21), 23 (day 23), 35 (day 35), and 42 d (day 42). Dietary Cu levels were constant at 130 mg/kg. Serum, jejunum, liver, and kidney levels of Zn and Cu as well as mRNA abundance of genes related to Zn and Cu metabolism were analyzed. Zinc levels were greatest in 3,000Zn piglets from day 35 in all tissues (P ≤ 0.01). In 3,000Zn piglets, mRNA expression of ZIP4 was reduced in jejunum whereas ZnT1 and MT3 were stimulated in jejunum and liver and MT1 in kidney (P ≤ 0.04) from day 35. Copper levels were greatest in jejunum (P = 0.06) and kidney (P ≤ 0.01; days 35 and 42 only) and lowest in liver and serum (P ≤ 0.01) of 3,000Zn piglets. In conclusion, the treatment containing 3,000 mg ZnO/kg triggered Zn homeostatic mechanisms in weaned pigs and impaired Cu metabolism through high enterocyte and kidney Cu sequestration.


Zinc oxide (ZnO) is commonly used in post-weaning pig diets as growth promoter alternative to antibiotics to prevent diarrhea. The use of supranutritional levels of ZnO in post-weaning pigs diets has been challenged due to environmental issues and concerns related to bacterial resistance to antibiotics and heavy metals. However, the limited knowledge of the consequences of high levels of dietary ZnO on the metabolism of trace minerals has hampered advances to replace this nutritional strategy without compromising piglets health. Therefore, this experiment was conducted to evaluate the effects of increasing levels of dietary ZnO (i.e., 100, 1,000, and 3,000 mg/kg) on Zn and Cu metabolism in weaned piglets. In this experiment, it was demonstrated that systemic Zn levels were not effectively regulated with supplementation levels at 3,000 mg of ZnO/kg of diet. In addition, this level of dietary ZnO increased the intestinal intracellular sequestration of Cu and impaired its renal reabsorption, negatively impacting hepatic, and systemic serum Cu concentrations. These results emphasize the potential risk of Cu deficiency under long-term supranutritional supplementation of dietary ZnO during the post-weaning period, with potentially detrimental impacts on piglets growth.


Asunto(s)
Óxido de Zinc , Porcinos , Animales , Óxido de Zinc/farmacología , Zinc/farmacología , Cobre/metabolismo , Óxidos , Destete , ARN Mensajero/genética , ARN Mensajero/metabolismo , Suplementos Dietéticos
3.
PLoS One ; 16(2): e0247188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606751

RESUMEN

Weaning is associated with increased occurrence of infections and diseases in piglets. Recent findings indicate that weaning induces mitochondrial dysfunction and oxidative stress conditions that more severely impact smaller piglets. The objective of this study was to characterize the molecular mechanisms underlying these physiological consequences and the relation with systemic inflammatory status in both normal and low birth weight (NBW and LBW) piglets throughout the peri-weaning period. To conduct the study, 30 sows were inseminated, and specific piglets from their litters were assigned to one of two experimental groups: NBW (n = 60, 1.73 ± 0.01 kg,) and LBW piglets weighing less than 1.2 kg (n = 60, 1.01 ± 0.01 kg). Then, 10 piglets from each group were selected at 14, 21 (weaning), 23, 25, 29 and 35 days of age to collect organ and plasma samples. Specific porcine RT2 Profiler™ PCR Arrays related to mitochondrial function, oxidative stress, inflammation and apoptosis processes were first used to target genes that are modulated after weaning in NBW piglets (d 23 and d 35 vs. d 14). Expression of selected genes was evaluated by quantitative PCR. These analyses revealed that expression of inflammatory genes CXCL10 and CCL19 increased after weaning in intestinal mucosa, while expression of genes encoding subunits of the mitochondrial respiratory chain was downregulated in liver and kidney of both groups. Interestingly, major modulators of mitophagy (BNIP3), cell survival (BCL2A1) and antioxidant defense system (TXNRD2, GPx3, HMOX1) were found to be highly expressed in NBW piglets. The systemic levels of TNF-α and IL1-ß significantly increased following weaning and were higher in NBW piglets. These results provide novel information about the molecular origin of mitochondrial dysfunction and oxidative stress observed in weaned piglets and suggest that clearance of dysfunctional mitochondria, antioxidant defenses and inflammatory response are compromised in LBW piglets.


Asunto(s)
Apoptosis/genética , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Destete , Animales , Peso al Nacer , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Regulación hacia Abajo , Metabolismo Energético/genética , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Inflamación/genética , Inflamación/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Porcinos , Regulación hacia Arriba
4.
Toxics ; 9(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546146

RESUMEN

Fish consumption is the main exposure pathway of the neurotoxicant methylmercury (MeHg) in humans. The risk associated with exposure to MeHg may be modified by its interactions with selenium (Se) and arsenic (As). In vitro bioaccessibility studies have demonstrated that cooking the fish muscle decreases MeHg solubility markedly and, as a consequence, its potential absorption by the consumer. However, this phenomenon has yet to be validated by in vivo models. Our study aimed to test whether MeHg bioaccessibility can be used as a surrogate to assess the effect of cooking on MeHg in vivo availability. We fed pigs raw and cooked tuna meals and collected blood samples from catheters in the portal vein and carotid artery at: 0, 30, 60, 90, 120, 180, 240, 300, 360, 420, 480 and 540 min post-meal. In contrast to in vitro models, pig oral bioavailability of MeHg was not affected by cooking, although the MeHg kinetics of absorption was faster for the cooked meal than for the raw meal. We conclude that bioaccessibility should not be readily used as a direct surrogate for in vivo studies and that, in contrast with the in vitro results, the cooking of fish muscle did not decrease the exposure of the consumer to MeHg.

5.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33514521

RESUMEN

Pigs are major reservoirs of resistant Enterobacteriaceae that can reach humans through consumption of contaminated meat or vegetables grown in manure-fertilized soil. Samples were collected from sows during lactation and their piglets at five time points spanning the production cycle. Cefotaxime-resistant bacteria were quantified and isolated from feed, feces, manures and carcasses of pigs reared with penicillin-using or antibiotic-free husbandries. The isolates were characterized by antibiotic susceptibility testing, whole genome sequencing and conjugation assays. The extended spectrum ß-lactamase (ESBL) phenotype was more frequent in isolates originating from antibiotic-free animals, while the bacteria isolated from penicillin-using animals were on average resistant to a greater number of antibiotics. The ESBL-encoding genes identified were bla CTX-M-1, bla CTX-M-15 and bla CMY-2 and they co-localised on plasmids with various genes encoding resistance to ß-lactams, co-trimoxazole, phenicols and tetracycline, all antibiotics used in pig production. Groups of genes conferring the observed resistance and the mobile elements disseminating multidrug resistance were determined. The observed resistance to ß-lactams was mainly due to the complementary actions of penicillin-binding proteins, an efflux pump and ß-lactamases. Most resistance determinants were shared by animals raised with or without antimicrobials. This suggests a key contribution of indigenous enterobacteria maternally transmitted along the sow lineage, regardless of antimicrobial use. It is unclear if the antimicrobial resistance observed in the enterobacteria populations of the commercial pig herds studied were present before the use of antibiotics, or the extent to which historical antimicrobial use exerted a selective pressure defining the resistant bacterial populations in farms using penicillin prophylaxis.Importance: Antimicrobial resistance is a global threat that needs to be fought on numerous fronts along the One Health continuum. Vast quantities of antimicrobials are used in agriculture to ensure animal welfare and productivity, and are arguably a driving force for the persistence of environmental and food-borne resistant bacteria. This study evaluated the impact of conventional, organic and other antibiotic-free husbandry practices on the frequency and nature of antimicrobial resistance genes and multidrug resistant enterobacteria. It provides knowledge about the relative contribution of specific resistance determinants to observed antibiotic resistance. It also showed the clear co-selection of genes coding for extended-spectrum beta-lactamases and genes coding for the resistance to antibiotics commonly used for prophylaxis or in curative treatments in pig operations.

6.
J Anim Sci ; 98(8)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32783055

RESUMEN

This study aimed to evaluate the effects of a combination of feed additives with complementary functional properties on the intestinal microbiota, homocysteine, and vitamins E and B status as well as systemic immune response of weanling piglets. At weaning, 32 litters were assigned to one of the following dietary treatments (DT): 1) conventional diet (CTRL); 2) CTRL diet supplemented with antibiotics (ATB); 3) a cocktail of feed additives containing cranberry extract, encapsulated carvacrol, yeast-derived products, and extra vitamins A, D, E, and B complex (CKTL); or 4) CKTL diet with bovine colostrum in replacement of plasma proteins (CKTL + COL). Within each litter, the piglets with lowest and highest birth weights (LBW and HBW, respectively) and two piglets of medium birth weight (MBW) were identified. The MBW piglets were euthanized at 42 d of age in order to characterize the ileal and colonic microbiota. Blood samples were also collected at weaning and at 42 d of age from LBW and HBW piglets to measure insulin-like growth factor-1 (IGF-1), cysteine, homocysteine, and vitamins E, B6, and B12, and to characterize the leukocyte populations. At 42 d of age, cytokine production by stimulated peripheral blood mononuclear cells was also measured. In a second experiment, piglets were reared under commercial conditions to evaluate the effects of the DT on the growth performance. At the indicator species analysis, the highest indicator value (IV) for Succinivibrio dextrinosolvens was found in the CKTL group, whereas the highest IV for Lactobacillus reuteri and Faecalibacterium prausnitzii was evidenced in the CKTL + COL group (P < 0.05). Compared with the other DT, CTRL piglets had higher concentrations of homocysteine, whereas the CKTL and CKTL + COL supplementations increased the concentrations of vitamins E and B12 (P < 0.05). DT had no effect on IGF-1 concentration and on blood leukocytes populations; however, compared with HBW piglets, LBW animals had lower values of IGF-1, whereas the percentages of γδ T lymphocytes and T helper were decreased and increased, respectively (P < 0.05). CKTL + COL also improved the growth performance of piglets reared under commercial conditions (P < 0.05). This study highlights the impact of birth weight on piglet systemic immune defenses and the potential of weaning diet supplemented with feed additives and bovine colostrum to modulate the homocysteine metabolism and the intestinal microbiota.


Asunto(s)
Alimentación Animal/análisis , Antibacterianos/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/clasificación , Biomarcadores/sangre , Femenino , Extractos Vegetales/administración & dosificación , Extractos Vegetales/química , Porcinos , Enfermedades de los Porcinos/prevención & control
7.
Vet Immunol Immunopathol ; 226: 110072, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32540688

RESUMEN

Immune system development of piglets is influenced by birth weight and colostrum and milk intake. Moreover, the dam transfer to piglets of vitamins A and D and copper, which play important role in immunity, is limited during lactation. In this study, we evaluated the potential of maternal and neonatal supplementations with vitamins A and D and copper, with or without neonatal supplementation of bovine colostrum (BC), to modulate the immune system development of low birth weight (LBW) and high birth weight (HBW) piglets during the peri-weaning period. Litters from 23 control sows (CONT) were assigned to one of the following treatments: 1) control (C); 2) oral administration at 2 and 8 days (d) of age of retinol-acetate, 25-hydroxyvitamin D and CuSO4 and exposure to UVB light for 15 min every second day from d 5 to d 21 (ADCu); 3) oral administration of dehydrated BC (4 g/d) from d 5 to d 10 (BC); 4) ADCu + BC. This experimental design was repeated with 24 sows fed extra daily supplements of 25-hydroxyvitamin D (4,000 IU), ß-carotene (30,000 IU) and Cu-yeast (equivalent 45 mg of Cu) from 90 d of gestation until weaning at d 21 (SUPPL). Within each litter, 2 LBW and 2 HBW piglets were euthanized at d 16 and d 23 in order to characterize leukocyte subsets in mesenteric lymph nodes (MLN) and blood by flow cytometry, and to measure gene expression in the MLN and jejunal mucosa by qPCR. At d 16, results revealed that the percentages of γδ and cytotoxic T lymphocytes were significantly reduced in LBW compared to HBW piglets. The jejunal expression of interleukin (IL) 22 was also up-regulated, along with MLN expression of C-C Motif Chemokine Ligand 23, bone morphogenetic protein 2 and secreted phosphoprotein 1 (SPP1), whereas jejunal expression of tumor necrosis factor α was decreased in LBW piglets. At d 23, LBW piglets showed lower amounts of γδ T lymphocytes, higher percentages of CD3- and CD3-CD8α+CD16+ leukocytes (which include Natural killer cells) and lower jejunal expression of IL18. Furthermore, supplementation with BC increased the blood percentage of CD3-CD16+ leukocytes and reduced jejunal IL5 and MLN IL15 expression whereas supplementation with ADCu + BC increased jejunal TNF superfamily 13B and MLN SPP1 expression. Our results suggest that immune system development after birth differed between LBW and HBW piglets and that early dietary supplementation with BC and ADCu has the potential to modulate development of immune functions.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales/inmunología , Animales Lactantes/inmunología , Peso al Nacer , Calostro/inmunología , Micronutrientes/administración & dosificación , Porcinos/inmunología , Alimentación Animal , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Citocinas/genética , Citocinas/inmunología , Suplementos Dietéticos/análisis , Femenino , Inmunidad , Destete
8.
J Anim Sci ; 98(3)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32087017

RESUMEN

The present study compares the net portal appearance of dietary iron (Fe) and selenium (Se) after meals containing different sources and levels of these minerals. Twelve pigs (55.1 ± 3.7 kg) were used in a cross-over design to assess the 11-h net portal-drained viscera (PDV) flux of serum Fe and Se after ingestion of boluses containing inorganic (I) or organic (O) dietary Fe and Se at industry average (A; 200 and 0.6 mg, respectively) or high (H; 400 and 1.2 mg, respectively) levels. Arterial serum Fe concentrations increased by an average of 158% within 6 h post-meal and gradually decreased thereafter (P < 0.001). Values were greater (P < 0.001) for I than for O until 6 h post-meal and greater (P ≤ 0.001) for A than for H from 4 to 8 h post-meal. For the whole post-prandial period (11 h), arterial serum Fe concentrations tended (P = 0.06) to be greater for I than for O and were lowest for HO (P ≤ 0.03). Net PDV flux of Fe tended to be greater for AI than for AO (P ≥ 0.07). Cumulative appearance of Fe in PDV serum (% of dietary intake) was greater for I than for O (2.43 vs. -0.76%; P = 0.02) and A tended to be greater than H (1.96 vs. -0.29 %; P = 0.09) until 3 h post-meal, but these effects further faded out (P ≥ 0.43). Arterial serum Se concentration decreased for all treatments (average of 7%) from premeal values (P < 0.001), and this was more pronounced for O than for I (P = 0.03). Irrespective of treatment, net PDV flux of Se was positive (different from 0, P ≤ 0.03) during the first 90 min post-meal, decreased to negative minimum values (different from 0, P = 0.03) at 5 h post-meal, and was not different from 0 thereafter (P ≥ 0.11). Cumulative appearance of Se in PDV serum (% of dietary intake) was greater for I than for O (20.0 vs. -3.8%; P = 0.04) only at 45 min post-meal. In conclusion, both dietary Fe and Se absorption are limited to the early post-meal period. Whereas for Fe, the level effect is in accordance with the known negative correlation between its dietary concentration and percentage of intestinal absorption, this was not the case for dietary Se. The postabsorptive availability of dietary I was greater than O for both minerals and, particularly for Fe, at low levels.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Hierro de la Dieta/administración & dosificación , Selenio/administración & dosificación , Porcinos/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Estudios Cruzados , Femenino , Absorción Intestinal , Hierro de la Dieta/metabolismo , Hígado/metabolismo , Periodo Posprandial , Selenio/metabolismo
9.
J Anim Sci ; 97(9): 3938-3946, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31292635

RESUMEN

The present study compared the net intestinal absorption of zinc (Zn) and copper (Cu) after meals containing different dietary ratios among these trace elements. Ten 46-kg pigs were used in a cross-over design to assess the 10-h net portal-drained viscera (PDV) flux of serum Cu and Zn after ingestion of boluses containing ZnSO4 and CuSO4 in different Zn:Cu ratios (mg:mg): 120:20; 200:20; 120:8; and 200:8. Arterial Zn concentrations peaked within the first hour post-meal and responses were greater with 200 (0.9 to 1.8 mg/L) than with 120 mg (0.9 to 1.6 mg/L) of dietary Zn (dietary Zn × time, P = 0.05). Net PDV flux of Zn was greater (P = 0.02) with 200 than with 120 mg of dietary Zn and tended to be greater (P = 0.10) with 20 than with 8 mg of dietary Cu. The cumulative PDV appearance of Zn (% of dietary intake) was greater with 120 than 200 mg of dietary Zn from 8 h post-meal (P ≤ 0.04) and with 20 than 8 mg of dietary Cu from 7 h post-meal (P ≤ 0.05). At the end of the postprandial period (10 h), estimated PDV appearance of Zn was 16.0%, 18.4%, 12.0%, and 15.3% of Zn intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. For Cu, irrespective of treatment, arterial values varied (P < 0.01) by less than 5% across postmeal times. Net PDV flux was not affected by treatments (P ≥ 0.12), but the value for ratio 120:20 was different from zero (P = 0.03). There was an interaction dietary Zn × dietary Cu on cumulative PDV appearance of Cu (% of dietary intake) at 30 min post-meal (P = 0.04) and thereafter at 3 h post-meal (P = 0.04). For the whole postprandial period (10 h), estimated PDV appearance of Cu was 61.9%, 42.1%, -17.1%, and 23.6% of Cu intake for 120:8, 120:20, 200:8, and 200:20 ratios, respectively. In conclusion, the present dietary amounts and ratios of Zn and Cu can affect the metabolic availability of both trace minerals for pigs. Ratios with 120 mg of dietary Zn maximized the postintestinal availability of both Zn and Cu.


Asunto(s)
Cobre/metabolismo , Suplementos Dietéticos/análisis , Porcinos/fisiología , Oligoelementos/metabolismo , Zinc/metabolismo , Animales , Dieta/veterinaria , Femenino , Absorción Intestinal/efectos de los fármacos , Hígado/metabolismo , Estado Nutricional , Periodo Posprandial
10.
J Trace Elem Med Biol ; 44: 65-70, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965602

RESUMEN

In pig, the assessment of bioavailability of dietary trace minerals with classical approaches such as relative bioavailability estimates or digestive tract balances have often generated inconsistent responses. In the present study, net portal-drained-viscera fluxes were monitored after a meal to assess intestinal absorption of zinc (Zn) or copper (Cu) according to dietary sources and levels of these trace minerals. Twelve pigs were surgically equipped with portal and carotid catheters and a portal ultrasonic flow probe for 12-h postprandial measurements. In a cross-over design, pigs received boluses of inorganic (I) or organic (O) dietary Cu and Zn at adequate (A, 20 and 200mg, respectively) or high (H, 40 and 400mg, respectively) level just before a 0.8-kg meal (semi-purified diet). Whatever treatments, arterial Zn increased by 72% at 45min postprandial and gradually declined thereafter (P<0.01). Arterial Zn were greater by 11% after O than I (P=0.02) and by 19% after H than A (P<0.01) meals. Net portal-drained-viscera fluxes of Zn during the first 240min postprandial were greater by 44% after O than I (P=0.10) and by 51% after H than A (P=0.07) meals. For Cu, portal-drained-viscera fluxes of Cu up to 240min postprandial were greater (P=0.03) after A than H meals. Those results suggest that Zn is absorbed rapidly, likely in the upper digestive tract of pigs and, whatever dietary levels, more efficiently after O meals. It appears that H levels of both Zn and Cu interfered with intestinal absorption of Cu and/or stimulate post-absorption enterocyte sequestration of this mineral.


Asunto(s)
Cobre/sangre , Mucosa Intestinal/metabolismo , Vena Porta/metabolismo , Periodo Posprandial , Oligoelementos/sangre , Zinc/sangre , Animales , Femenino , Absorción Intestinal , Sus scrofa
11.
J Alzheimers Dis ; 56(4): 1459-1468, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28157102

RESUMEN

BACKGROUND: Aerobic training has some benefits for delaying the onset or progression of Alzheimer's disease (AD). Little is known about the implication of the brain's two main fuels, glucose and ketones (acetoacetate), associated with thesebenefits. OBJECTIVE: To determine whether aerobic exercise training modifies brain energy metabolism in mild AD. METHODS: In this uncontrolled study, ten patients with mild AD participated in a 3-month, individualized, moderate-intensity aerobic training on a treadmill (Walking). Quantitative measurement of brain uptake of glucose (CMRglu) and acetoacetate (CMRacac) using neuroimaging and cognitive testing were done before and after the Walking program. RESULTS: Four men and six women with an average global cognitive score (MMSE) of 26/30 and an average age of 73 y completed the Walking program. Average total distance and treadmill speed were 8 km/week and 4 km/h, respectively. Compared to the Baseline, after Walking, CMRacac was three-fold higher (0.6±0.4 versus 0.2±0.1 µmol/100 g/min; p = 0.01). Plasma acetoacetate concentration and the blood-to-brain acetoacetate influx rate constant were also increased by 2-3-fold (all p≤0.03). CMRglu was unchanged after Walking (28.0±0.1 µmol/100 g/min; p = 0.96). There was a tendency toward improvement in the Stroop-color naming test (-10% completion time, p = 0.06). Performance on the Trail Making A&B tests was also directly related to plasma acetoacetate and CMRacac (all p≤0.01). CONCLUSION: In mild AD, aerobic training improved brain energy metabolism by increasing ketone uptake and utilization while maintaining brain glucose uptake, and could potentially be associated with some cognitive improvement.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Terapia por Ejercicio , Caminata , Acetoacetatos/metabolismo , Anciano , Enfermedad de Alzheimer/psicología , Cognición/fisiología , Femenino , Glucosa/metabolismo , Humanos , Cetonas/metabolismo , Imagen por Resonancia Magnética , Masculino , Pruebas de Estado Mental y Demencia , Neuroimagen , Pruebas Neuropsicológicas , Proyectos Piloto , Tomografía de Emisión de Positrones , Resultado del Tratamiento , Caminata/fisiología , Caminata/psicología
12.
J Anim Sci ; 94(5): 1961-71, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27285694

RESUMEN

The present experiment aimed to determine if Trp metabolism and growth responses to dietary Trp are modulated by dietary niacin (B) in weanling piglets. Piglets weaned at 3 wk of age were distributed 1 wk later (7.6 kg of BW, SEM = 0.1) in 52 pens of 2 animals each. Pens were assigned to factorial dietary treatments with 2 additions of B, 15 mg/kg (LB3) vs. 45 mg/kg (HB3) and 2 additions of Trp, 0 mg/kg (-Trp) vs. 1 mg/kg (+Trp) for Trp to Lys ratios of 0.16 vs. 0.24, respectively. Growth performance was recorded every week from 4 to 10 wk of age. Fasting blood samples were taken at 4, 6, 8, and 10 wk of age. From 4 to 10 wk of age, ADFI tended to be greater ( = 0.10) in HB3 than in LB3 (1,031 vs. 1,003 g, SEM = 7), and this was reflected ( = 0.06) by ADG (642 vs. 623 g, SEM = 7). No treatment effect was observed on plasma Trp or kynurenine (Kyn), an intermediate metabolite of Trp catabolism. The response of plasma nicotinamide (Nam), a product of Trp catabolism and an indicator of B status, to dietary B differed according to treatments (interaction Trp × B, < 0.01) with values of 1.4, 3.3, 4.1, and 5.3 µM (SEM = 0.1) in LB3-Trp, HB3-Trp, LB3+Trp, and HB3+Trp, respectively. At 11 wk of age, postprandial blood samples were collected from 6 piglets per treatment for measurements of Trp and insulin metabolism. Postprandial plasma Trp (96.4 vs. 72.2 µ, SEM = 3.4) and Kyn (1.7 vs. 1.3 µ, SEM = 0.1) were greater ( < 0.01) in +Trp vs. -Trp. Postprandial plasma Nam was greater ( < 0.01) in +Trp vs. -Trp (3.4 vs. 1.9 µ, SEM = 0.3) and in HB3 vs. LB3 piglets (3.4 vs. 1.9 µ, SEM = 0.3). Postprandial peaks and areas under curves of C-peptide and glucose were not affected by treatments. However, for insulin, the postprandial peak was lower in +Trp vs. -Trp piglets in the LB3 group (interaction Trp × B, < 0.05); values were 1.3, 1.0, 0.7, and 1.0 n (SEM = 0.1) in LB3-Trp, HB3-Trp, LB3+Trp, and HB3+Trp, respectively. The peak value of the molar ratio insulin:C-peptide was lower ( < 0.02) in +Trp vs. -Trp piglets (0.56 vs. 0.73, SEM = 0.05). The responses observed on growth performance and plasma Nam suggest that the LB3 level was suboptimal. According also to plasma Nam, it appears that supplemental dietary B can attenuate Trp oxidation toward niacin metabolites. Postprandial profiles of insulin and C-peptide indicate that Trp action is exerted on insulin clearance rather than on insulin secretion in piglets, without apparent consequences on glucose utilization.


Asunto(s)
Suplementos Dietéticos , Insulina/metabolismo , Niacina/farmacología , Porcinos/fisiología , Triptófano/farmacología , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Quinurenina/sangre , Masculino , Niacina/administración & dosificación , Periodo Posprandial , Triptófano/sangre , Triptófano/metabolismo , Vitaminas
13.
J Trace Elem Med Biol ; 34: 79-89, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26854249

RESUMEN

This study aimed to determine the effects of dietary pyridoxine and selenium (Se) on embryo development, reproductive performance and redox system in gilts. Eighty-four gilts were fed one of five diets: CONT) basal diet; MSeB60) CONT+0.3mg/kg of Na-selenite; MSeB610) diet 2+10mg/kg of HCl-pyridoxine; OSeB60) CONT+0.3mg/kg of Se-enriched yeast; and OSeB610) diet 4+10mg/kg of HCl-pyridoxine. Blood samples were collected for long-term (each estrus and slaughter) and peri-estrus (fourth estrus d -4 to d +3) profiles. At slaughter (gestation d 30), organs and embryos were collected. For long-term and peri-estrus profiles, Se level and source affected (P<0.01) blood Se concentration whereas B6 level increased (P<0.01) erythrocyte pyridoxal-5-phosphate concentration. A B6 level (P<0.05) effect was observed on long-term plasma Se-dependent glutathione peroxidase (Se-GPX) activity whereas peri-estrus Se-GPX was minimum on d -1 (P<0.01). Selenium level increased sows' organs and embryo Se concentration (P<0.01). Selenium source tended to enhance embryo Se content (P=0.06). Within-litter embryo Se content was increased by B6 level (P<0.01). Selenium level tended to affect Se-GPX and total GPX activities in organs mitochondria (P=0.09 and 0.07, respectively). Selenium source affected kidney ATP synthesis (P=0.05). In conclusion, B6 level affected the Se-GPX activity on a long-term basis, whereas the basal level of Se was adequate during the peri-estrus period. Embryo quality was not improved by dietary Se, and B6 impaired within-litter homogeneity.


Asunto(s)
Embrión de Mamíferos/efectos de los fármacos , Piridoxina/uso terapéutico , Reproducción/efectos de los fármacos , Selenio/uso terapéutico , Animales , Suplementos Dietéticos , Femenino , Embarazo , Porcinos
14.
J Nutr Sci ; 4: e31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26495122

RESUMEN

Homocysteine (Hcy) is an intermediary sulphur amino acid recognised for pro-oxidative properties in several species which may weaken immune competence in piglets. In this species, there is an acute 10-fold increase of concentrations of plasma Hcy (pHcy) during the first 2 weeks of life. The present experiment aimed to determine if pHcy in piglets can be regulated by oral supplementations of betaine as a methyl group supplier, creatine for reducing the demand for methyl groups, choline with both previous functions and vitamin B6 as enzymic co-factor for Hcy catabolism. A total of seventeen sows (second parity) were fed gestation and lactation diets supplemented with folic acid (10 mg/kg) and vitamin B12 (150 µg/kg). Eight piglets in each litter received daily one of the eight following oral treatments (mg/kg body weight): (1) control (saline); (2) betaine (50); (3) choline (70); (4) creatine (300); (5) pyridoxine (0·2); (6) treatments 2 and 5; (7) treatments 3 and 4; and (8) treatments 2, 3, 4 and 5. According to age, pHcy increased sharply from 2·48 µm at birth to 17·96 µm at 21 d of age (P < 0·01). Concentrations of pHcy tended to be lower (P = 0·09) in treated than in control piglets but the highest and sole pairwise significant decrease (23 %) was observed between treatments 1 and 8 (P = 0·03). Growth from birth to 21 d of age was not influenced by treatments (P > 0·70). Therefore, it appears possible to reduce pHcy concentrations in suckling piglets but a combination of all chosen nutrients is required.

15.
J Trace Elem Med Biol ; 32: 21-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26302908

RESUMEN

This study aimed to assess the interaction between vitamin B6 and selenium (Se) for the flow of Se towards the Se-dependent glutathione peroxidase (GPX) system in response to oxidative stress naturally induced by oestrus in a pubertal pig model. At first oestrus, forty-five gilts were randomly assigned to the experimental diets (n=9/group): basal diet (CONT); CONT+0.3mg/kg of Na-selenite (MSeB60); MSeB60+10mg/kg of HCl-B6 (MSeB610); CONT+0.3mg/kg of Se-enriched yeast (OSeB60); and OSeB60+10mg/kg of HCl-B6 (OSeB610). Blood samples were collected at each oestrus (long-term profiles), and daily from day -4 to +3 (slaughter) of the fourth oestrus (peri-oestrus profiles) after which liver, kidneys, and ovaries were collected. For long-term profiles, CONT had lower blood Se than Se-supplemented gilts (p<0.01) and OSe was higher than MSe (p<0.01). Lower erythrocyte pyridoxal-5-phosphate was found in B60 than B610 (p<0.01). No treatment effect was observed on GPX activity. For peri-oestrus profiles, treatment effects were similar to long-term profiles. Treatment effects on liver Se were similar to those for long-term blood Se profiles and OSe had higher renal Se concentrations than MSe gilts (p<0.01). Gene expressions of GPX1, GPX3, GPX4, and selenocysteine lyase in liver and kidney were greatest in OSeB610 gilts (p<0.05). These results suggest that dietary B6 modulate the metabolic pathway of OSe towards the GPX system during the peri-oestrus period in pubertal pigs.


Asunto(s)
Estro/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pubertad/efectos de los fármacos , Selenio/farmacología , Vitamina B 6/farmacología , Animales , Antioxidantes/farmacología , Dieta , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Peroxidasa/sangre , Glutatión Peroxidasa/genética , Riñón/efectos de los fármacos , Riñón/enzimología , Hígado/efectos de los fármacos , Hígado/enzimología , Hormona Luteinizante/metabolismo , Metaboloma/efectos de los fármacos , Ovulación/efectos de los fármacos , Fosfato de Piridoxal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Selenio/sangre , Factores de Tiempo , Útero/efectos de los fármacos , Útero/metabolismo
16.
Arch Anim Nutr ; 68(5): 370-84, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25179553

RESUMEN

This study aimed to compare the effects of organic (proteinate) and inorganic (sulphate) copper (Cu) and zinc (Zn) supplements, in presence or absence of a mannan oligosaccharide (MOS) supplement, on mineral solubility and digestibility in pigs. Twenty-eight barrows (25 ± 4 kg) assigned randomly to four treatment groups were fed a corn-wheat-soya bean meal diet with 10 mg/kg of Cu and 100 mg/kg of Zn supplied as organic or inorganic supplement, and supplemented or not with 0.1% MOS. After an adaptation period, total faeces and urine were collected for a period of 6-7 days. Pigs were then euthanatised and digesta from ileum and caecum were collected. Apparent digestibility was calculated in ileum and caecum using titanium dioxide. The organic mineral supplement improved total (faecal) digestibility and retained/ingested ratio of Cu (p < 0.05) while reducing apparent digestibility of Zn in the ileum (p < 0.05) without effect on total digestibility of Zn. Solubilities of Cu and Zn in liquid fraction of ileum and caecum were not affected by mineral sources. Although MOS supplement increased Cu solubility in the ileum (p < 0.05), it had no effect on digestibility of Zn and Cu in ileum, caecum and faeces, retained/ingested ratio of Zn and Cu, or pH and volatile fatty acid concentration in ileal and caecal digesta. In conclusion, organic mineral supplement improved total digestibility and retained/ingested ratio of Cu in pigs but this cannot be attributed to its solubility in ileal and caecal digesta. The MOS supplement did not interfere with digestibility or dietary utilisation of Zn and Cu in pigs fed above the Zn and Cu requirements.


Asunto(s)
Sulfato de Cobre/metabolismo , Suplementos Dietéticos , Mananos/administración & dosificación , Oligosacáridos/administración & dosificación , Porcinos/fisiología , Compuestos de Zinc/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Animales Recién Nacidos , Sulfato de Cobre/administración & dosificación , Sulfato de Cobre/química , Digestión , Heces/química , Masculino , Porcinos/crecimiento & desarrollo , Aumento de Peso , Compuestos de Zinc/administración & dosificación , Compuestos de Zinc/química
17.
Food Chem Toxicol ; 64: 119-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24291452

RESUMEN

The aim of the present study was to perform a short-term safety evaluation of dietary mono-conjugated α-linolenic acid isomers (CLNA; c9-t11-c15-18:3+c9-t13-c15-18:3) using a neonatal pig model. CLNA diet was compared with three other dietary fats: (1) conjugated linoleic acid (CLA; c9-t11-18:2+t10-c12-18:2), (2) non-conjugated n-3 PUFA and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed into four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. Mono-CLNA diet did not significantly change body or organ weight, carcass composition and most biochemical parameters including; glucose, cholesterol, triglycerides, creatinine, blood urea nitrogen, hepatic enzymes and electrolytes levels in blood (P⩾0.09). Conversely, the n-3 PUFA composition of the brain, liver and heart decreased by 6-21% in the CLNA-fed group compared to animals fed nonconjugated n-3 PUFA (P<0.01). Responses to dietary treatments were tissue-specific, with the liver and the brain being the most deprived in n-3 PUFA. Our results support that short-term intake of mono-CLNA is safe in neonatal pigs but n-3 PUFA reduction in tissues deserves to be further investigated before using long-term nutritional supplementation in pigs and other animal models and before moving to clinical trials.


Asunto(s)
Animales Recién Nacidos , Grasas Insaturadas en la Dieta/efectos adversos , Ácidos Linoleicos Conjugados/efectos adversos , Modelos Animales , Animales , Glucemia/metabolismo , Nitrógeno de la Urea Sanguínea , Colesterol/sangre , Creatinina/sangre , Hígado/enzimología , Porcinos , Triglicéridos/sangre
18.
Eur J Nutr ; 53(3): 761-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24005871

RESUMEN

PURPOSE: There is an increased interest in the benefits of conjugated α-linolenic acid (CLNA) on obesity-related complications such as insulin resistance and diabetes. The aim of the study was to investigate whether a 1% dietary supplementation of mono-CLNA isomers (c9-t11-c15-18:3 + c9-t13-c15-18:3) improved glucose and lipid metabolism in neonatal pigs. METHODS: Since mono-CLNA isomers combine one conjugated two-double-bond system with an n-3 polyunsaturated fatty acid (PUFA) structure, the experimental protocol was designed to isolate the dietary structural characteristics of the molecules by comparing a CLNA diet with three other dietary fats: (1) conjugated linoleic acid (c9-t11-18:2 + t10-c12-18:2; CLA), (2) non-conjugated n-3 PUFA, and (3) n-6 PUFA. Thirty-two piglets weaned at 3 weeks of age were distributed among the four dietary groups. Diets were isoenergetic and food intake was controlled by a gastric tube. After 2 weeks of supplementation, gastro-enteral (OGTT) and parenteral (IVGTT) glucose tolerance tests were conducted. RESULTS: Dietary supplementation with mono-CLNA did not modify body weight/fat or blood lipid profiles (p > 0.82 and p > 0.57, respectively) compared with other dietary groups. Plasma glucose, insulin, and C-peptide responses to OGTT and IVGTT in the CLNA group were not different from the three other dietary groups (p > 0.18 and p > 0.15, respectively). Compared to the non-conjugated n-3 PUFA diet, CLNA-fed animals had decreased liver composition in three n-3 fatty acids (18:3n-3; 20:3n-3; 22:5n-3; p < 0.001). CONCLUSIONS: These results suggest that providing 1% mono-CLNA is not effective in improving insulin sensitivity in neonatal pigs.


Asunto(s)
Suplementos Dietéticos , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/prevención & control , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Ácido alfa-Linolénico/uso terapéutico , Animales , Canadá , Cruzamientos Genéticos , Suplementos Dietéticos/análisis , Emulsiones , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/uso terapéutico , Femenino , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/metabolismo , Intolerancia a la Glucosa/patología , Hígado/patología , Masculino , Orquiectomía/veterinaria , Distribución Aleatoria , Estereoisomerismo , Sus scrofa , Destete , Aumento de Peso , Ácido alfa-Linolénico/análisis , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/metabolismo
19.
Proc Nutr Soc ; 71(3): 425-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22607969

RESUMEN

The objective of this review is to provide an overview of the implication of amino acids (AA) in important physiological functions. This is done in the context of pig production where the competition for AA utilisation is exacerbated by constraints to maximise productive responses and the necessity to reduce dietary protein input for environmental, economic and sanitary issues. Therefore, there is an opportunity to refine the nutritional recommendations by exploring the physiological roles of AA. For example, methionine and cysteine, either in selenised or sulfur forms, are directly involved in the regulation of the glutathione antioxidative system. In sows, glutathione antioxidative system may contribute to improving ovulation conditions through control of oxidative pressure. Supplementation of sow diets with l-arginine, a precursor of NO and polyamines, may stimulate placental growth, promoting conceptus survival, growth and tissue development. The beneficial effect of arginine supplementation has been also suggested to improve lactation performance. Feed intake is usually the first response that is impacted by an inadequate AA supply. Valine and tryptophan imbalances may act as signals for decreasing feed intake. AA are also important nutrients for maintaining the animal's defence systems. Threonine, one of the main constituents of mucin protein, is important for gut development during the postnatal period. It may exert a protective effect that reduces the impact of weaning on gut morphology and associated disturbances. Finally, tryptophan is involved in the regulation of the defence system through its action as a precursor of antioxidants and its effect on the inflammatory response.


Asunto(s)
Aminoácidos/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Dieta/veterinaria , Proteínas en la Dieta/farmacología , Aminoácidos/uso terapéutico , Animales , Antioxidantes/metabolismo , Proteínas en la Dieta/uso terapéutico , Ingestión de Energía/efectos de los fármacos , Femenino , Desarrollo Fetal/efectos de los fármacos , Enfermedades Gastrointestinales/prevención & control , Enfermedades Gastrointestinales/veterinaria , Crecimiento/efectos de los fármacos , Inflamación/prevención & control , Inflamación/veterinaria , Porcinos
20.
Br J Nutr ; 107(1): 61-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21733330

RESUMEN

The natural source of vitamin B12 in human diets comes from animal products. For example, one glass (250 ml) of milk provides approximately 50 % of the RDA (2·4 µg/d). It was hypothesised that the provision of vitamin B12 from milk is more efficiently absorbed than the synthetic form used in vitamin supplements. Pigs (n 10) were used as a model for intestinal absorption of vitamin B12 in humans to compare the net fluxes of vitamin B12 across the portal-drained viscera (PDV; an indicator of intestinal absorption) after ingestion of meals complemented with conventional and vitamin B12-enriched (via injections to cows) milk (raw, pasteurised or microfiltrated) or with equivalent amounts of cyanocobalamin, the synthetic form used in supplements or unsupplemented. Net flux of vitamin B12 across PDV after the ingestion of milk was positive, though not influenced by milk enrichment (P>0·3) or technological processes (P = 0·8) and was greater than after ingestion of equivalent amounts of cyanocobalamin (cyanocobalamin v. all milk, P ≤ 0·003). In fact, net fluxes of this vitamin were not different from 0 after either cyanocobalamin or the meal devoid of vitamin B12 (unsupplemented v. cyanocobalamin, P = 0·7). The cumulative PDV fluxes during the 24 h following ingestion of meals complemented with milk varied from 5·5 to 6·8 µg. These values correspond to an efficiency of intestinal absorption of vitamin B12 from milk varying between 8 and 10 %. Therefore, vitamin B12, which is abundant in cows' milk, is also substantially more available than the most commonly used synthetic form of this vitamin.


Asunto(s)
Conservación de Alimentos/métodos , Absorción Intestinal , Leche/química , Vitamina B 12/metabolismo , Animales , Disponibilidad Biológica , Bovinos , Cruzamientos Genéticos , Dieta/efectos adversos , Suplementos Dietéticos/análisis , Femenino , Alimentos Fortificados/análisis , Leche/metabolismo , Valor Nutritivo , Sistema Porta/metabolismo , Sus scrofa , Vitamina B 12/administración & dosificación , Vitamina B 12/análisis , Vitamina B 12/sangre , Deficiencia de Vitamina B 12/prevención & control , Destete
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA