Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Intervalo de año de publicación
1.
Braz J Microbiol ; 55(1): 737-748, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38008804

RESUMEN

Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.


Asunto(s)
Bacillus , Fosfatos , Fosfatos/metabolismo , Bacillus/metabolismo , Raíces de Plantas/microbiología , Fósforo/metabolismo , Bacillus subtilis/metabolismo , Suelo , Zea mays/microbiología
2.
Chemosphere ; 287(Pt 3): 132237, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34543894

RESUMEN

Agrowaste biochars [sugarcane straw (SS), rice husk (RH), poultry manure (PM), and sawdust (SW)] were synthesized at different pyrolysis temperatures (350, 450, 550, and 650 °C) to evaluate their potential to retain highly mobile herbicides, such as hexazinone and tebuthiuron that often contaminate water resources around sugarcane plantations. A new low field nuclear magnetic resonance approach based on decay due to diffusion in internal magnetic field (NMR-DDIF) was successfully used to determine biochar's porosity and specific surface area (SSA) to clear the findings of this work. SSA of pores with diameters >5.0 µm increased with pyrolysis temperatures and seemed to dictate biochar's retention, which was >70% of the applied amounts at 650 °C. These macropores appear to act as main arteries for herbicide intra-particle diffusion into smaller pores, thus enhancing herbicides retention. Biochar granulometry had little, but herbicide aging had a significant effect on sorption, mainly of tebuthiuron. However, soils amended with 10,000 kg ha-1 of the biochars showed low sorption potential. Therefore, higher than usual biochar rates or proper incorporation strategies, i.e., surface incorporation, will be needed to remediate areas contaminated with these highly mobile herbicides, thus precluding their leaching to groundwaters.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Espectroscopía de Resonancia Magnética , Porosidad , Suelo , Contaminantes del Suelo/análisis
3.
Braz J Microbiol ; 49 Suppl 1: 40-46, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30150087

RESUMEN

Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.


Asunto(s)
Bacillus/metabolismo , Endófitos/metabolismo , Nutrientes/metabolismo , Pennisetum/crecimiento & desarrollo , Pennisetum/microbiología , Fosfatos/metabolismo , Bacillus/genética , Endófitos/genética , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Pennisetum/metabolismo , Fosfatos/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Sideróforos/metabolismo
4.
Plant Physiol Biochem ; 126: 206-216, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29525444

RESUMEN

Cladosporium herbarum is a plant pathogen associated with passion fruit scab and mild diseases in pea and soybean. In this study, a peptidogalactomannan (pGM) of C. herbarum mycelium was isolated and structurally characterized, and its role in plant-fungus interactions was evaluated. C. herbarum pGM is composed of carbohydrates (76%) and contains mannose, galactose and glucose as its main monosaccharides (molar ratio, 52:36:12). Methylation and 13C-nuclear magnetic resonance (13C-NMR) spectroscopy analysis have shown the presence of a main chain containing (1 → 6)-linked α-D-Manp residues, and ß-D-Galf residues are present as (1 → 5)-interlinked side chains. ß-Galactofuranose containing similar structures were characterized by our group in A. fumigatus, A. versicolor, A. flavus and C. resinae. Tobacco BY-2 cells were used as a model system to address the question of the role of C. herbarum pGM in cell viability and induction of the expression of plant defense-related genes. Native and partially acid hydrolyzed pGMs (lacking galactofuranosyl side-chain residues) were incubated with BY-2 cell suspensions at different concentrations. Cell viability drastically decreased after exposure to more than 400 µg ml-1 pGM; however no cell viability effect was observed after exposure to a partially acid hydrolyzed pGM. BY-2 cell contact with pGM strongly induce the expression of plant defense-related genes, such as phenylalanine ammonia lyase (PAL) and lipoxygenase (LOX), as well as the pathogen-related PR-1a, PR-2 and PR-3 genes, suggesting that pGM activates defense responses in tobacco cells. Interestingly, contact with partially hydrolyzed pGM also induced defense-related gene expression at earlier times than native pGM. These results show that the side chains of the (1 → 5)-linked ß-D-galactofuranosyl units from pGM play an important role in the first line fungus-plant interactions mediating plant responses against C. herbarum. In addition, it was observed that pGM and/or C. herbarum conidia are able to induced HR when in contact with tobacco leaves and in vitro plantlets roots, producing necrotic lesions and peroxidase and NO burst, respectively.


Asunto(s)
Cladosporium , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Nicotiana , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Raíces de Plantas , Células Vegetales/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/enzimología , Hojas de la Planta/microbiología , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/microbiología , Nicotiana/citología , Nicotiana/enzimología , Nicotiana/microbiología
5.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469639

RESUMEN

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.

6.
Braz. j. microbiol ; 49(supl.1): 40-46, 2018. tab
Artículo en Inglés | LILACS | ID: biblio-974339

RESUMEN

Abstract Bacterial endophytes are considered to have a beneficial effect on host plants, improving their growth by different mechanisms. The objective of this study was to investigate the capacity of four endophytic Bacillus strains to solubilize iron phosphate (Fe-P), produce siderophores and indole-acetic acid (IAA) in vitro, and to evaluate their plant growth promotion ability in greenhouse conditions by inoculation into pearl millet cultivated in a P-deficient soils without P fertilization, with Araxá rock phosphate or soluble triple superphosphate. All strains solubilized Fe-P and three of them produced carboxylate-type siderophores and high levels of IAA in the presence of tryptophan. Positive effect of inoculation of some of these strains on shoot and root dry weight and the N P K content of plants cultivated in soil with no P fertilization might result from the synergistic combination of multiple plant growth promoting (PGP) traits. Specifically, while B1923 enhanced shoot and root dry weight and root N P content of plants cultivated with no P added, B2084 and B2088 strains showed positive performance on biomass production and accumulation of N P K in the shoot, indicating that they have higher potential to be microbial biofertilizer candidates for commercial applications in the absence of fertilization.


Asunto(s)
Bacillus/metabolismo , Alimentos/metabolismo , Pennisetum/crecimiento & desarrollo , Pennisetum/microbiología , Endófitos/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/análisis , Fosfatos/metabolismo , Bacillus/genética , Sideróforos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Pennisetum/metabolismo , Endófitos/genética , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA