Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
ACS Chem Neurosci ; 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39469734

RESUMEN

A hallmark of Parkinson disease (PD) is a progressive degeneration of neurons in the substantia nigra pars compacta, hypothalamus, and thalamus. Although the exact etiology of irreversible neuronal degeneration is unclear, a growing body of experimental evidence indicates that PD could be triggered by the abrupt aggregation of α-synuclein (α-Syn), a small membrane protein that is responsible for cell vesicle trafficking. Phospholipids uniquely alter the rate of α-Syn aggregation and, consequently, change the cytotoxicity of α-Syn oligomers and fibrils. However, the role of cholesterol in the aggregation of α-Syn remains unclear. In this study, we used Caenorhabditis elegans that overexpressed α-Syn to investigate the effect of low (15%), normal (30%), and high (60%) concentrations of cholesterol on α-Syn aggregation. We found that an increase in the concentration of cholesterol in diets substantially shortened the lifespan of C. elegans. Using biophysical methods, we also investigated the extent to which large unilamellar vesicles (LUVs) with low, normal, and high concentrations of cholesterol altered the rate of α-Syn aggregation. We found that only lipid membranes with a 60% concentration of cholesterol substantially accelerated the rate of protein aggregation. Cell assays revealed that α-Syn fibrils formed in the presence of LUVs with different concentrations of cholesterol exerted very similar levels of cytotoxicity to rat dopaminergic neurons. These results suggest that changes in the concentration of cholesterol in the plasma membrane, which in turn could be caused by nutritional preferences, could accelerate the onset and progression of PD.

2.
J Phys Chem Lett ; 15(33): 8577-8583, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39140785

RESUMEN

A progressive aggregation of Tau proteins in the brain is linked to both Alzheimer's disease (AD) and various Tauopathies. This pathological process can be enhanced by several substances, including heparin. However, very little if anything is known about molecules that can inhibit the aggregation of Tau isoforms. In this study, we examined the effect of phosphatidylserines (PSs) with various lengths and saturations of fatty acids (FAs) on the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N-terminal inserts that enhance binding of Tau to tubulin. We found that PS with unsaturated and short-length FAs inhibited Tau aggregation and drastically lowered the toxicity of Tau oligomers that were formed in the presence of such phospholipids. Such an effect was not observed for PS with fully saturated long-chain FAs. These results suggest that a short-chain irreversible disbalance between saturated and unsaturated lipids in the brain could be the trigger of Tau aggregation.


Asunto(s)
Fosfolípidos , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Humanos , Fosfolípidos/química , Fosfolípidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Heparina/química , Heparina/farmacología , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
3.
Protein Sci ; 33(7): e5078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38895991

RESUMEN

Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid ß peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid ß peptide and modify the toxicity of amyloid ß aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.


Asunto(s)
Fosfatidilserinas , Tubulina (Proteína) , Proteínas tau , Proteínas tau/metabolismo , Proteínas tau/química , Proteínas tau/toxicidad , Humanos , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Unión Proteica , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Agregado de Proteínas , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/química
4.
Mol Pharm ; 21(5): 2565-2576, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38635186

RESUMEN

Amyloid oligomers and fibrils are protein aggregates that exert a high cell toxicity. Efficient degradation of these protein aggregates can minimize the spread and progression of neurodegeneration. In this study, we investigate the properties of natural killer (NK) cells and macrophages in the degradation of α-synuclein (α-Syn) aggregates grown in a lipid-free environment and in the presence of phosphatidylserine and cholesterol (PS/Cho), which are lipids that are directly associated with the onset and progression of Parkinson's disease. We found that both types of α-Syn aggregates were endocytosed by neurons, which caused strong damage to cell endosomes. Our results also indicated that PS/Cho vesicles drastically increased the toxicity of α-Syn fibrils formed in their presence compared to the toxicity of α-Syn aggregates grown in a lipid-free environment. Both NK cells and macrophages were able to degrade α-Syn and α-Syn/Cho monomers, oligomers, and fibrils. Quantitative analysis of protein degradation showed that macrophages demonstrated substantially more efficient internalization and degradation of amyloid aggregates in comparison to NK cells. We also found that amyloid aggregates induced the proliferation of macrophages and NK cells and significantly changed the expression of their cytokines and chemokines.


Asunto(s)
Amiloide , Células Asesinas Naturales , Macrófagos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Humanos , Amiloide/metabolismo , Agregado de Proteínas , Animales , Ratones , Colesterol/metabolismo , Colesterol/química , Fosfatidilserinas/metabolismo , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Endocitosis , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo
5.
ACS Chem Neurosci ; 14(17): 3183-3191, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37603792

RESUMEN

Abrupt aggregation of α-synuclein (α-Syn) in the midbrain hypothalamus and thalamus is a hallmark of Parkinson's disease (PD), the fastest growing neurodegenerative pathology, projected to strike 12 million people by 2040 worldwide. In this study, we examine the effect of two phospholipids that are present in neuronal membranes, phosphatidylcholine (PC) and phosphatidylserine (PS), on the rate of α-Syn aggregation. We found that PS accelerated α-Syn aggregation, whereas PC strongly inhibited α-Syn aggregation. We also utilized the nano-infrared imaging technique, also known as atomic force microscopy infrared (AFM-IR) spectroscopy, to investigate whether PC and PS only change the rates or also modify the secondary structure of α-Syn aggregates. We found that both phospholipids uniquely altered the secondary structure of α-Syn aggregates present at the lag and growth phase, as well as the late stage of protein aggregation. In addition, compared to the α-Syn aggregates formed in the lipid-free environment, α-Syn:PC and α-Syn:PS aggregates demonstrated higher cellular toxicity to N27 rat neurons. Interestingly, both α-Syn:PC and α-Syn:PS aggregates showed similar levels of oxidative stress, but α-Syn:PC aggregates exhibited a greater degree of mitochondrial dysfunction compared to α-Syn:PS aggregates.


Asunto(s)
Fosfatidilcolinas , Fosfatidilserinas , Animales , Ratas , alfa-Sinucleína , Fosfolípidos , Citoesqueleto
6.
FASEB J ; 37(7): e22972, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37302013

RESUMEN

Docosahexaenoic (DHA) and arachidonic acids (ARA) are omega-3 and omega-6 long-chain polyunsaturated fatty acids (LCPUFAs). These molecules constitute a substantial portion of phospholipids in plasma membranes. Therefore, both DHA and ARA are essential diet components. Once consumed, DHA and ARA can interact with a large variety of biomolecules, including proteins such as insulin and α-synuclein (α-Syn). Under pathological conditions known as injection amyloidosis and Parkinson's disease, these proteins aggregate forming amyloid oligomers and fibrils, toxic species that exert high cell toxicity. In this study, we investigate the role of DHA and ARA in the aggregation properties of α-Syn and insulin. We found that the presence of both DHA and ARA at the equimolar concentrations strongly accelerated aggregation rates of α-Syn and insulin. Furthermore, LCPUFAs substantially altered the secondary structure of protein aggregates, whereas no noticeable changes in the fibril morphology were observed. Nanoscale Infrared analysis of α-Syn and insulin fibrils grown in the presence of both DHA and ARA revealed the presence of LCPUFAs in these aggregates. We also found that such LCPUFAs-rich α-Syn and insulin fibrils exerted significantly greater toxicities compared to the aggregates grown in the LCPUFAs-free environment. These findings show that interactions between amyloid-associated proteins and LCPUFAs can be the underlying molecular cause of neurodegenerative diseases.


Asunto(s)
Ácidos Grasos Omega-3 , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Insulina , Amiloide/toxicidad , Amiloide/química , Ácidos Grasos Insaturados , Proteínas Amiloidogénicas , Ácidos Araquidónicos
7.
ACS Chem Neurosci ; 14(12): 2396-2404, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37279439

RESUMEN

Phosphatidylserine (PS) is a negatively charged lipid that plays a critically important role in cell apoptosis. Under physiological conditions, PS is localized on the cytosolic side of plasma membranes via ATP-dependent flippase-mediated transport. A decrease in the ATP levels in the cell, which is taken place upon pathological processes, results in the increase in PS concentration on the exterior part of the cell membranes. PS on the outer membrane surfaces attracts and activates phagocytes, which trigger cell apoptosis. This programed irreversible cell death is observed upon the progressive neurodegeneration, a hallmark of numerous amyloid associated pathologies, such as diabetes type 2 and Alzheimer's disease. In this study, we investigate the extent to which the rates of protein aggregation, which occurs upon amyloid pathologies, can be altered by the concentration of PS in large unilamellar vesicles (LUVs). We found that with an increase in the concentration of PS from 20 to 40% relative to the concentration of phosphatidylcholine and phosphatidylethanolamine, the rate of insulin aggregation, protein linked to diabetes type 2, and injection amyloidosis drastically increased. Furthermore, the concentration of PS in LUVs determined the secondary structure of protein aggregates formed in their presence. We also found that these structurally different aggregates exerted distinctly different cell toxicities. These findings suggest that a substantial decrease in cell viability, which is likely to take place upon aging, results in the increase in the concentration of PS in the outer plasma membranes, where it triggers the irreversible self-assembly of amyloidogenic proteins, which, in turn, causes the progressive neurodegeneration.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Insulina , Proteínas Amiloidogénicas , Amiloide/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Adenosina Trifosfato
8.
ACS Omega ; 8(13): 12379-12386, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033844

RESUMEN

The plasma membrane is a dynamic structure that separates the cell interior from the extracellular space. The fluidity and plasticity of the membrane determines a large number of physiologically important processes ranging from cell division to signal transduction. In turn, membrane fluidity is determined by phospholipids that possess different charges, lengths, and saturation states of fatty acids. A growing body of evidence suggests that phospholipids may play an important role in the aggregation of misfolded proteins, which causes pathological conditions that lead to severe neurodegenerative diseases. In this study, we investigate the role of the charge of the most abundant phospholipids in the plasma membrane: phosphatidylcholine and phosphatidylethanolamine, zwitterions: phosphatidylserine and phosphatidylglycerol, lipids that possess a negative charge, and cardiolipin that has double negative charge on its polar head. Our results show that both zwitterions strongly inhibit insulin aggregation, whereas negatively charged lipids accelerate fibril formation. We also found that in the equimolar presence of zwitterions insulin yields oligomers that exert significantly lower cell toxicity compared to fibrils that were grown in the lipid-free environment. Such aggregates were not formed in the presence of negatively charged lipids. Instead, long insulin fibrils that had strong cell toxicity were grown in the presence of such negatively charged lipids. However, our results showed no correlation between the charge of the lipid and secondary structure and toxicity of the aggregates formed in its presence. These findings show that the secondary structure and toxicity are determined by the chemical structure of the lipid rather than by the charge of the phospholipid polar head.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36907244

RESUMEN

Irreversible aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies, including diabetes type 2, Alzheimer's, and Parkinson's diseases. Such an abrupt protein aggregation results in the formation of small oligomers that can propagate into amyloid fibrils. A growing body of evidence suggests that protein aggregation can be uniquely altered by lipids. However, the role of the protein-to-lipid (P:L) ratio on the rate of protein aggregation, as well as the structure and toxicity of corresponding protein aggregates remains poorly understood. In this study, we investigate the role of the P:L ratio of five different phospho- and sphingolipids on the rate of lysozyme aggregation. We observed significantly different rates of lysozyme aggregation at 1:1, 1:5, and 1:10 P:L ratios of all analyzed lipids except phosphatidylcholine (PC). However, we found that at those P:L ratios, structurally and morphologically similar fibrils were formed. As a result, for all studies of lipids except PC, mature lysozyme aggregates exerted insignificantly different cell toxicity. These results demonstrate that the P:L ratio directly determines the rate of protein aggregation, however, has very little if any effect on the secondary structure of mature lysozyme aggregates. Furthermore, our results point to the lack of a direct relationship between the rate of protein aggregation, secondary structure, and toxicity of mature fibrils.


Asunto(s)
Diabetes Mellitus Tipo 2 , Muramidasa , Humanos , Muramidasa/química , Muramidasa/metabolismo , Agregado de Proteínas , Amiloide/química , Amiloide/metabolismo , Lípidos
10.
FEBS J ; 290(12): 3203-3220, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36705524

RESUMEN

Abrupt aggregation of amyloid ß1-42 (Aß) peptide is a hallmark of Alzheimer's disease (AD), a severe pathology that affects more than 44 million people worldwide. A growing body of evidence suggests that lipids can uniquely alter rates of Aß1-42 aggregation. However, it remains unclear whether lipids only alter rates of protein aggregation or also uniquely modify the secondary structure and toxicity of Aß1-42 oligomers and fibrils. In this study, we investigated the effect of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Chol) on Aß1-42 aggregation. We found that PC, CL and Chol strongly accelerated the rate of fibril formation compared to the rate of Aß1-42 aggregation in the lipid-free environment. Furthermore, anionic CL enabled the strongest acceleration of Aß1-42 aggregation compared to zwitterionic PC and uncharged Chol. We also found that PC, CL and Chol uniquely altered the secondary structure of early-, middle- and late-stage Aß1-42 aggregates. Specifically, CL and Chol drastically increased the amount of parallel ß-sheet in Aß1-42 oligomers and fibrils grown in the presence of these lipids. This caused a significant increase in the toxicity of Aß : CL and Aß : Chol compared to the toxicity of Aß : PC and Aß1-42 aggregates formed in the lipid-free environment. These results demonstrate that toxicity of Aß aggregates correlates with the amount of their ß-sheet content, which, in turn, is determined by the chemical structure of lipids present at the stage of Aß1-42 aggregation.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Estructura Secundaria de Proteína , Conformación Proteica en Lámina beta , Fosfatidilcolinas , Fragmentos de Péptidos/metabolismo , Amiloide/química
11.
Clin Exp Med ; 23(6): 2551-2560, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36527513

RESUMEN

We characterised the expansion, phenotype and functional activity of natural killer (NK) cells obtained for a clinical trial. Nineteen expansion procedures were performed to obtain NK cell products for 16 patients. NK cells were expanded ex vivo from haploidentical donor peripheral blood mononuclear cells in the presence of the locally generated feeder cell line K-562 with ectopic expression of 4-1BBL and mbIL-21. The median duration of expansion was 18 days (interquartile range 15-19). The median number of live cells yielded was 2.26 × 109 (range 1.6-3.4 × 109) with an NK content of 96.6% (range 95.1-97.9%). The median NK cell fold expansion was 171 (range 124-275). NK cell fold expansion depended on the number of seeded NK cells, the initial level of C-myc expression and the initial number of mature and immature NK cells. The majority of expanded NK cells had the phenotype of immature activated cells (NKG2A + , double bright CD56 + + CD16 + + , CD57-) expressing NKp30, NKp44, NKp46, NKG2D, CD69, HLA-DR and CD96. Despite the expression of exhaustion markers, expanded NK cells exhibited high cytolytic activity against leukaemia cell lines, high degranulation activity and cytokine production. There was a noted decrease in the functional activity of NK cells in tests against the patient's blasts.In conclusion, NK cells obtained by ex vivo expansion with locally generated K562-41BBL-mbIL21 cells had a relatively undifferentiated phenotype and enhanced cytolytic activity against cancer cell lines. Expansion of NK cells with feeder cells yielded a sufficient quantity of the NK cell product to reach high cell doses or increase the frequency of cell infusions for adoptive immunotherapy. Registered at clinicaltrials.gov as NCT04327037.


Asunto(s)
Células Asesinas Naturales , Leucocitos Mononucleares , Humanos , Células K562 , Células Asesinas Naturales/metabolismo , Línea Celular Tumoral , Fenotipo
12.
Artículo en Inglés | MEDLINE | ID: mdl-36272517

RESUMEN

Amyloid formation is a hallmark of many medical diseases including diabetes type 2, Alzheimer's and Parkinson diseases. Under these pathological conditions, misfolded proteins self-assemble forming oligomers and fibrils, structurally heterogeneous aggregates that exhibit a large variety of shapes and forms. A growing body of evidence points to drastic changes in the lipid profile in organs affected by amyloidogenic diseases. In this study, we investigated the extent to which individual phospho- and sphingolipids, as well as their mixtures can impact insulin aggregation. Our results show that lipids and their mixtures uniquely alter rates of insulin aggregation simultaneously changing the secondary structure of protein aggregates that are grown in their presence. These structurally different protein-lipid aggregates impact cell viability to different extent while using distinct mechanisms of toxicity. These findings suggest that irreversible changes in lipid profiles of organs may trigger formation of toxic protein species that in turn are responsible for the onset and progression of amyloidogenic diseases.


Asunto(s)
Insulina , Enfermedad de Parkinson , Humanos , Amiloide/química , Amiloide/metabolismo , Estructura Secundaria de Proteína , Lípidos
13.
FASEB J ; 36(10): e22543, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36094052

RESUMEN

Abrupt aggregation of misfolded proteins is a hallmark of the large group of amyloid pathologies that include diabetes type 2, Alzheimer and Parkinson's diseases. Protein aggregation yields oligomers and fibrils, ß-sheet-rich structures that exert cell toxicity. Microscopic examination of amyloid deposits reveals the presence of lipids membranes, which suggests that lipids can be involved in the process of pathogenic protein assembly. In this study, we show that lipids can uniquely alter the aggregation rates of lysozyme, a protein that is associated with systemic amyloidosis. Specifically, cardiolipin (CL), ceramide (CER), and sphingomyelin (SM) accelerate, phosphatidylcholine (PC) strongly inhibits, whereas phosphatidylserine (PS) has no effect on the rate of protein aggregation. Furthermore, lipids uniquely alter the secondary structure of lysozyme aggregates. Furthermore, we found that lysozyme aggregates grown in the presence of CL, CER, SM, PS, and CL:PC mixtures exert significantly lower production of reactive oxygen species and mitochondrial dysfunction compared to lysozyme:PC aggregates and lysozyme fibrils grown in the lipid-free environment. These findings suggest that a change in the lipid composition of cell membranes, which is taken place upon neurodegeneration, may trigger the formation of toxic protein species that otherwise would not be formed.


Asunto(s)
Muramidasa , Agregado de Proteínas , Amiloide/metabolismo , Antivirales , Cardiolipinas , Muramidasa/química , Muramidasa/metabolismo , Muramidasa/ultraestructura , Estructura Secundaria de Proteína
14.
J Phys Chem Lett ; 13(38): 8833-8839, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36111888

RESUMEN

Biophysical properties of plasma membranes are determined by a chemical structure of phospholipids, including saturation of fatty acids and charge of polar heads of these molecules. Phospholipids not only determine fluidity and plasticity of membranes but also play an important role in abrupt aggregation of misfolded proteins. In this study, we investigate the role of the charge of the most abundant phospholipids in the plasma membrane on the aggregation properties of the lysozyme. We found that the charge of phospholipids determines the aggregation rate of lysozyme and the morphology of the protein aggregates. However, the secondary structure and toxicity of these protein specimens are determined by the chemical nature rather than the charge of phospholipids. These findings show that the charge of phospholipids can be a key factor that determines the stability and aggregation mechanism of amyloidogenic proteins.


Asunto(s)
Muramidasa , Fosfolípidos , Amiloide/química , Proteínas Amiloidogénicas/química , Proteínas Amiloidogénicas/metabolismo , Ácidos Grasos , Muramidasa/química , Fosfolípidos/química , Agregado de Proteínas
15.
ACS Chem Neurosci ; 13(16): 2483-2489, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35930674

RESUMEN

Phosphatidic acid (PA) is a unique plasma membrane lipid that contains fatty acids (FAs) with different lengths and degrees of unsaturation. Under physiological conditions, PA acts as a second messenger regulating a wide variety of cellular processes. At the same time, the role of PA under pathological conditions, which are caused by an abrupt aggregation of amyloid proteins, remains unclear. In this study, we investigated the effect of PA with different lengths and unsaturation of FAs on insulin aggregation. We found that PA with C16:0 FAs strongly inhibited insulin aggregation, whereas PA with C18:0 FAs accelerated it. Furthermore, PA with unsaturated (C18:1) FAs made the insulin form extremely long and thick fibrils that were not observed for PAs with saturated FAs. We also found that the presence of PA with C16:0 FAs resulted in the formation of aggregates that exerted significantly lower cell toxicity compared to the aggregates formed in the presence of PAs with C18:0 and C18:1 FAs. These results suggest that PA may play a key role in neurodegeneration.


Asunto(s)
Ácidos Grasos , Ácidos Fosfatidicos , Ácidos Grasos/metabolismo , Insulina , Lípidos de la Membrana , Fibras Musculares Esqueléticas/metabolismo , Ácidos Fosfatidicos/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166485, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35840040

RESUMEN

Amyloid oligomers and fibrils are protein aggregates that cause an onset and progression of many neurodegenerative diseases, diabetes type 2 and systemic amyloidosis. Although a growing body of evidence shows that oligomers and fibrils trigger mitochondrial dysfunction simultaneously enhancing production of reactive oxygen species, exact mechanisms by which these protein aggregates exert their toxicities remain unclear. In this study, we used advanced microscopic and spectroscopic methods to examine topography and structure of insulin aggregates grown in the lipid-free environment, as well as in the presence of major classes of phospho- and sphingolipids. We also employed a set of molecular markers to determine the extent to which insulin aggregates induce a damage of cell endoplasmic reticulum (ER), an important cell organelle used for calcium storage, protein synthesis and folding. Our results show that insulin aggregates activate the expression of Activating Transcription Factor 6 (ATF6), a transmembrane protein that is involved in unfolded protein response (UPR) of the stressed ER. At the same time, two other ER transmembrane proteins, Inositol Requiring 1 (IRE1α) and eLF2a, the product of PKR-like ER kinase (PERK), exhibited very low expression levels. Furthermore, amyloid aggregates trigger an expression of the 78-kDa glucose-regulated protein GRP78, which is also involved in the UPR. We also observed UPR-induced expression of a proapoptotic transcription factor CHOP, which, in turn, regulates expression of caspase 3 kinase and BCL2 protein family members, including the ER localized Bax. These findings show that insulin oligomers and fibrils induce UPR-associated ER stress and ultimately fatal changes in cell homeostasis.


Asunto(s)
Amiloidosis , Insulinas , Factor de Transcripción Activador 6/metabolismo , Amiloidosis/metabolismo , Calcio/metabolismo , Caspasa 3/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Humanos , Inositol/metabolismo , Insulinas/metabolismo , Agregado de Proteínas , Proteínas Serina-Treonina Quinasas , Especies Reactivas de Oxígeno/metabolismo , Esfingolípidos/metabolismo , Factor de Transcripción CHOP/metabolismo , Proteína X Asociada a bcl-2/metabolismo
17.
FEBS J ; 289(23): 7537-7544, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35736671

RESUMEN

Abrupt aggregation of misfolded proteins is a hallmark of many medical pathologies including diabetes type 2, Alzheimer and Parkinson diseases. This results in the formation of amyloid fibrils, protein aggregates with distinct supramolecular chirality. A growing body of evidence suggests that lipids can alter rates of protein aggregation. In this study, we investigated whether lipids could alter the supramolecular chirality of amyloid fibrils. We found that if present at the stage of protein aggregation, phospho- and sphingolipids uniquely reversed supramolecular chirality of insulin and lysozyme fibrils. Furthermore, amyloid fibrils with opposite supramolecular chirality exerted distinctly different cell toxicity. Specifically, insulin and lysozyme fibrils with reversed supramolecular chirality were less toxic to cells than the aggregates with normal supramolecular chirality. These findings point on the important role of lipids and supramolecular chirality of amyloid fibrils in the onset and progression of amyloid diseases.


Asunto(s)
Amiloide , Agregado de Proteínas , Insulina
18.
J Phys Chem C Nanomater Interfaces ; 126(8): 4157-4162, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35719853

RESUMEN

Atomic force microscopy infrared (AFM-IR) spectroscopy is an emerging analytical technique that can be used to probe the structural organization of specimens with nanometer spatial resolution. A growing body of evidence suggests that nanoscale structural analysis of very small (<10 nm) biological objects, such as viruses and amyloid aggregates, requires substrates that must fit strict criteria of low surface roughness and low IR background, simultaneously. In this study, we examine the suitability of a broad range of substrates commonly used in AFM and IR fields, and we determined that silicon, zinc sulfide, and calcium fluoride are the most ideal substrates for nanoscale imaging of amyloid oligomers, protein aggregates that are directly linked to the onset and progression of neurodegenerative diseases. Our data show that these substrates provide the lowest roughness and the lowest background in the 800-1800 cm-1 spectral window from all examined AFM and IR substrates. We also investigate a contribution of surface enhancement in AFM-IR by the direct comparison of signal intensities from oligomers located on silicon and gold-coated silicon surfaces. We found that metallization of such substrates provides a factor of ~7 enhancements to the IR signal and induces an equivalent enhancement of the sample background in the 950-1250 cm-1 spectral region.

19.
J Phys Chem Lett ; 13(20): 4563-4569, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35580189

RESUMEN

Lipid bilayers play an important role in the pathological assembly of amyloidogenic proteins and peptides. This assembly yields oligomers and fibrils, which are highly toxic protein aggregates. In this study, we investigated the role of saturation in fatty acids of two phospholipids that are present in cell membranes. We found that unsaturated cardiolipin (CL) drastically shortened the lag phase of insulin aggregation. Furthermore, structurally and morphologically different aggregates were formed in the presence of unsaturated CL vs saturated CL. These aggregates exerted drastically different cell toxicity. Both saturated and unsaturated phosphatidylcholine (PC) were able to inhibit insulin aggregation equally efficiently. Similar to CL, structurally different aggregates were formed in the presence of saturated and unsaturated PC. These aggregates exerted different cell toxicities. These results show that unsaturated phospholipids catalyze the formation of more toxic amyloid aggregates comparing to those formed in the presence of saturated lipids.


Asunto(s)
Ácidos Grasos , Fosfolípidos , Ácidos Grasos/metabolismo , Insulina , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfolípidos/metabolismo
20.
FEBS Lett ; 596(11): 1424-1433, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35510803

RESUMEN

Phosphatidylserine (PS) in the plasma membrane plays an important role in cell signaling and apoptosis. Cell degeneration is also linked to numerous amyloid diseases, pathologies that are associated with aggregation of misfolded proteins. In this work, we examine the effect of both saturated PS (DMPS) and unsaturated PS (DOPS and POPS) on the aggregation properties of insulin, as well as the structure and toxicity of insulin aggregates formed in the presence of these phospholipids. We found that the degree of unsaturation of fatty acids in PS alters the rate of insulin aggregation. We also found that toxicity of insulin-DMPS aggregates is significantly lower than the toxicity of DOPS- and POPS-insulin fibrils, whereas all these lipid-containing aggregates exert lower cell toxicity than insulin fibrils grown in a lipid-free environment.


Asunto(s)
Insulina , Fosfatidilserinas , Amiloide/metabolismo , Proteínas Amiloidogénicas , Ácidos Grasos/toxicidad , Insulina/metabolismo , Fosfatidilserinas/química , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA