Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Lung Cancer ; 190: 107506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422883

RESUMEN

BACKGROUND: First-line pembrolizumab plus chemotherapy has shown clinical benefit in patients with metastatic non-small cell lung cancer (NSCLC) regardless of tissue tumor mutational burden (tTMB) status. Blood tumor mutational burden (bTMB), assessed using plasma-derived circulating tumor DNA (ctDNA), may be a surrogate for tTMB. The KEYNOTE-782 study evaluated the correlation of bTMB with the efficacy of first-line pembrolizumab plus chemotherapy in NSCLC. METHODS: Previously untreated patients with stage IV nonsquamous NSCLC received pembrolizumab 200 mg plus pemetrexed 500 mg/m2 and investigator's choice of carboplatin area under the curve 5 mg/mL/min or cisplatin 75 mg/m2 for 4 cycles, then pembrolizumab plus pemetrexed for ≤31 additional cycles every 3 weeks. Study objectives were to evaluate the association of baseline bTMB with objective response rate (ORR) (RECIST v1.1 by investigator assessment; primary), progression-free survival (PFS; RECIST v1.1 by investigator assessment), overall survival (OS), and adverse events (AEs; all secondary). A next-generation sequencing assay (GRAIL LLC) with a ctDNA panel that included lung cancer-associated and immune gene targets was used to measure bTMB. RESULTS: 117 patients were enrolled; median time from first dose to data cutoff was 19.3 months (range, 1.0-35.5). ORR was 40.2 % (95 % CI 31.2-49.6 %), median PFS was 7.2 months (95 % CI 5.6-9.8) and median OS was 18.1 months (95 % CI 13.5-25.6). Treatment-related AEs occurred in 113 patients (96.6 %; grade 3-5, n = 56 [47.9 %]). Of patients with evaluable bTMB (n = 101), the area under the receiver operating characteristics curve for continuous bTMB to discriminate response was 0.47 (95 % CI 0.36-0.59). Baseline bTMB was not associated with PFS or OS (posterior probabilities of positive association: 16.8 % and 7.8 %, respectively). CONCLUSIONS: AEs were consistent with the established safety profile of first-line pembrolizumab plus chemotherapy in NSCLC. Baseline bTMB did not show evidence of an association with efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Pemetrexed/uso terapéutico , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
3.
Nat Commun ; 12(1): 2357, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883548

RESUMEN

Cell-free RNA (cfRNA) is a promising analyte for cancer detection. However, a comprehensive assessment of cfRNA in individuals with and without cancer has not been conducted. We perform the first transcriptome-wide characterization of cfRNA in cancer (stage III breast [n = 46], lung [n = 30]) and non-cancer (n = 89) participants from the Circulating Cell-free Genome Atlas (NCT02889978). Of 57,820 annotated genes, 39,564 (68%) are not detected in cfRNA from non-cancer individuals. Within these low-noise regions, we identify tissue- and cancer-specific genes, defined as "dark channel biomarker" (DCB) genes, that are recurrently detected in individuals with cancer. DCB levels in plasma correlate with tumor shedding rate and RNA expression in matched tissue, suggesting that DCBs with high expression in tumor tissue could enhance cancer detection in patients with low levels of circulating tumor DNA. Overall, cfRNA provides a unique opportunity to detect cancer, predict the tumor tissue of origin, and determine the cancer subtype.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Ácidos Nucleicos Libres de Células/genética , Neoplasias Pulmonares/genética , Transcriptoma , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Ácidos Nucleicos Libres de Células/sangre , Estudios de Cohortes , Bases de Datos de Ácidos Nucleicos , Femenino , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/sangre , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , ARN Mensajero/sangre , ARN Mensajero/genética
4.
Int J Mol Sci ; 19(4)2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642630

RESUMEN

The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.


Asunto(s)
Envejecimiento/metabolismo , Ayuno/metabolismo , Músculo Esquelético/metabolismo , Neuronas/metabolismo , Transcriptoma , Envejecimiento/genética , Animales , Drosophila , Regulación del Desarrollo de la Expresión Génica , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Neuronas/fisiología , Proteolisis
5.
PLoS One ; 11(10): e0164239, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711219

RESUMEN

The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.


Asunto(s)
Autofagia , Drosophila/genética , Sistema Nervioso/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Conducta Animal , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ayuno , Femenino , Genotipo , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas Sustrato del Receptor de Insulina/metabolismo , Longevidad , Masculino , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Sci Rep ; 6: 25252, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27143646

RESUMEN

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. In addition, there has been a growing appreciation that even repetitive, milder forms of TBI (mTBI) can have long-term deleterious consequences to neural tissues. Hampering our understanding of genetic and environmental factors that influence the cellular and molecular responses to injury has been the limited availability of effective genetic model systems that could be used to identify the key genes and pathways that modulate both the acute and long-term responses to TBI. Here we report the development of a severe and mild-repetitive TBI model using Drosophila. Using this system, key features that are typically found in mammalian TBI models were also identified in flies, including the activation of inflammatory and autophagy responses, increased Tau phosphorylation and neuronal defects that impair sleep-related behaviors. This novel injury paradigm demonstrates the utility of Drosophila as an effective tool to validate genetic and environmental factors that influence the whole animal response to trauma and to identify prospective therapies needed for the treatment of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Drosophila , Animales
7.
PLoS One ; 10(7): e0133053, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26176852

RESUMEN

Echinoderms, positioned taxonomically at the base of deuterostomes, provide an important system for the study of the evolution of the immune system. However, there is little known about the cellular components and genes associated with echinoderm immunity. The 2013-2014 sea star wasting disease outbreak is an emergent, rapidly spreading disease, which has led to large population declines of asteroids in the North American Pacific. While evidence suggests that the signs of this disease, twisting arms and lesions, may be attributed to a viral infection, the host response to infection is still poorly understood. In order to examine transcriptional responses of the sea star Pycnopodia helianthoides to sea star wasting disease, we injected a viral sized fraction (0.2 µm) homogenate prepared from symptomatic P. helianthoides into apparently healthy stars. Nine days following injection, when all stars were displaying signs of the disease, specimens were sacrificed and coelomocytes were extracted for RNA-seq analyses. A number of immune genes, including those involved in Toll signaling pathways, complement cascade, melanization response, and arachidonic acid metabolism, were differentially expressed. Furthermore, genes involved in nervous system processes and tissue remodeling were also differentially expressed, pointing to transcriptional changes underlying the signs of sea star wasting disease. The genomic resources presented here not only increase understanding of host response to sea star wasting disease, but also provide greater insight into the mechanisms underlying immune function in echinoderms.


Asunto(s)
Sistema Inmunológico/metabolismo , Sistema Nervioso/metabolismo , Estrellas de Mar/virología , Síndrome Debilitante/inmunología , Síndrome Debilitante/veterinaria , Animales , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/inmunología , Densovirus/patogenicidad , Densovirus/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sistema Inmunológico/virología , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/inmunología , Sistema Nervioso/inmunología , Sistema Nervioso/virología , Océano Pacífico , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Síndrome Debilitante/patología , Síndrome Debilitante/virología
8.
PLoS One ; 10(7): e0132768, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26182057

RESUMEN

Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks) exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE) reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks) are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies). Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.


Asunto(s)
Envejecimiento/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Unión al GTP Heterotriméricas/genética , Olfato/genética , Envejecimiento/metabolismo , Animales , Autofagia/genética , Ritmo Circadiano/genética , Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Regulación de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Masculino , Actividad Motora , Neuronas/metabolismo , Neuronas/patología , Agregado de Proteínas , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA