Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dev Biol ; 504: 120-127, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813160

RESUMEN

The current gold-standard for genetic lineage tracing in transgenic mice is based on cell-type specific expression of Cre recombinase. As an alternative, we developed a cell-type specific CRISPR/spCas9 system for lineage tracing. This method relies on RNA polymerase II promoter driven self-cleaving guide RNAs (scgRNA) to achieve tissue-specificity. To demonstrate proof-of-principle for this approach a transgenic mouse was generated harbouring a knock-in of a scgRNA into the Cytokeratin 14 (Krt14) locus. Krt14 expression marks the stem cells of squamous epithelium in the skin and oral mucosa. The scgRNA targets a Stop cassette preceding a fluorescent reporter in the Ai9-tdtomato mouse. Ai9-tdtomato reporter mice harbouring this allele along with a spCas9 transgene demonstrated precise marking of the Krt14 lineage. We conclude that RNA polymerase II promoter driven scgRNAs enable the use of CRISPR/spCas9 for genetic lineage tracing.


Asunto(s)
Sistemas CRISPR-Cas , ARN Polimerasa II , Animales , Ratones , Sistemas CRISPR-Cas/genética , Integrasas/genética , Queratina-14/genética , Queratina-14/metabolismo , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
2.
Life Sci ; 309: 120952, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36100080

RESUMEN

AIMS: Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of ß-cells is sufficient to change the glucose set-point of the whole islet. MATERIAL AND METHODS: Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of ß-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles. Metabolic analyses consisted of glucose tolerance tests, perifusion of isolated islets and intracellular calcium measurements. KEY FINDINGS: The αGSU-Cre transgene produced genetically mosaic islets, as Cre was active in 15 ± 1.2 % of ß-cells. While mice deficient for GK in a subset of islet cells were normal, unexpectedly, GKKI mice were chronically hypoglycemic, glucose intolerant, and had a lower threshold for glucose stimulated insulin secretion. GKKI mice exhibited an average fasting blood glucose level of 3.5 mM. GKKI islets responded with intracellular calcium signals that spread through the whole islets at 1 mM and secreted insulin at 3 mM glucose. SIGNIFICANCE: Genetic activation of GK in a minority of ß-cells is sufficient to change the glucose threshold for insulin secretion in the entire islet and thereby glucose homeostasis in the whole animal. These data support the model in which ß-cells with higher GK activity function as 'hub' or 'trigger' cells and thus control insulin secretion by the ß-cell collective within the islet.


Asunto(s)
Hipoglucemia , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Glucoquinasa/genética , Glucoquinasa/metabolismo , Células Secretoras de Insulina/metabolismo , Glucemia/metabolismo , Calcio/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Hipoglucemiantes/metabolismo
3.
Cell Metab ; 34(9): 1394-1409.e4, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070683

RESUMEN

Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Cromatina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Humanos , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología
4.
Nat Metab ; 4(2): 284-299, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35228745

RESUMEN

Type 1 diabetes (T1D) is an autoimmune disease in which immune cells destroy insulin-producing beta cells. The aetiology of this complex disease is dependent on the interplay of multiple heterogeneous cell types in the pancreatic environment. Here, we provide a single-cell atlas of pancreatic islets of 24 T1D, autoantibody-positive and nondiabetic organ donors across multiple quantitative modalities including ~80,000 cells using single-cell transcriptomics, ~7,000,000 cells using cytometry by time of flight and ~1,000,000 cells using in situ imaging mass cytometry. We develop an advanced integrative analytical strategy to assess pancreatic islets and identify canonical cell types. We show that a subset of exocrine ductal cells acquires a signature of tolerogenic dendritic cells in an apparent attempt at immune suppression in T1D donors. Our multimodal analyses delineate cell types and processes that may contribute to T1D immunopathogenesis and provide an integrative procedure for exploration and discovery of human pancreatic function.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Islotes Pancreáticos , Humanos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Hormonas Pancreáticas/metabolismo
5.
Nat Metab ; 2(10): 1013-1020, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32895576

RESUMEN

The intrahepatic milieu is inhospitable to intraportal islet allografts1-3, limiting their applicability for the treatment of type 1 diabetes. Although the subcutaneous space represents an alternate, safe and easily accessible site for pancreatic islet transplantation, lack of neovascularization and the resulting hypoxic cell death have largely limited the longevity of graft survival and function and pose a barrier to the widespread adoption of islet transplantation in the clinic. Here we report the successful subcutaneous transplantation of pancreatic islets admixed with a device-free islet viability matrix, resulting in long-term euglycaemia in diverse immune-competent and immuno-incompetent animal models. We validate sustained normoglycaemia afforded by our transplantation methodology using murine, porcine and human pancreatic islets, and also demonstrate its efficacy in a non-human primate model of syngeneic islet transplantation. Transplantation of the islet-islet viability matrix mixture in the subcutaneous space represents a simple, safe and reproducible method, paving the way for a new therapeutic paradigm for type 1 diabetes.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/cirugía , Trasplante de Islotes Pancreáticos/métodos , Tejido Subcutáneo/cirugía , Animales , Diabetes Mellitus Experimental/cirugía , Transportador de Glucosa de Tipo 2/biosíntesis , Transportador de Glucosa de Tipo 2/genética , Supervivencia de Injerto , Xenoinjertos , Humanos , Macaca fascicularis , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Porcinos
6.
Cell Mol Gastroenterol Hepatol ; 2(2): 175-188, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26949732

RESUMEN

BACKGROUND & AIMS: Intestinal epithelial stem cells that express Lgr5 and/or Bmi1 continuously replicate and generate differentiated cells throughout life1. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells2. However, ablating Paneth cells has no effect on maintenance of functional stem cells3-5. Here, we demonstrate definitively that a small subset of mesenchymal, subepithelial cells expressing the winged-helix transcription factor Foxl1 are a critical component of the intestinal stem cell niche. METHODS: We genetically ablated Foxl1+ mesenchymal cells in adult mice using two separate models by expressing either the human or simian diphtheria toxin receptor (DTR) under Foxl1 promoter control. CONCLUSIONS: Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor-cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells.

7.
Diabetes ; 63(12): 4206-17, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25028525

RESUMEN

Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal ß-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, ß-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal ß-cells reduced glucose tolerance without significantly reducing ß-cell mass or increasing ß-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and ßTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the ß-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal ß-cell function, directly regulates Pdx1 and Slc2a2, and has a mature ß-cell cistrome distinct from that of pancreatic endocrine progenitors.


Asunto(s)
Resistencia a la Insulina/genética , Células Secretoras de Insulina/metabolismo , Proteínas con Homeodominio LIM/genética , Elementos Reguladores de la Transcripción/genética , Factores de Transcripción/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/genética , Transportador de Glucosa de Tipo 2/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Insulina/genética , Insulina/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Ratones Noqueados , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
8.
Mol Endocrinol ; 24(8): 1605-14, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20592160

RESUMEN

The major role of glucagon is to promote hepatic gluconeogenesis and glycogenolysis to raise blood glucose levels during hypoglycemic conditions. Several animal models have been established to examine the in vivo function of glucagon in the liver through attenuation of glucagon via glucagon receptor knockout animals and pharmacological interventions. To investigate the consequences of glucagon loss to hepatic glucose production and glucose homeostasis, we derived mice with a pancreas specific ablation of the alpha-cell transcription factor, Arx, resulting in a complete loss of the glucagon-producing pancreatic alpha-cell. Using this model, we found that glucagon is not required for the general health of mice but is essential for total hepatic glucose production. Our data clarifies the importance of glucagon during the regulation of fasting and postprandial glucose homeostasis.


Asunto(s)
Glucemia/metabolismo , Células Secretoras de Glucagón/citología , Glucagón/fisiología , Proteínas de Homeodominio/fisiología , Factores de Transcripción/fisiología , Animales , Western Blotting , Glucagón/deficiencia , Proteínas de Homeodominio/genética , Células Secretoras de Insulina/citología , Masculino , Ratones , Ratones Mutantes , Células Secretoras de Polipéptido Pancreático/citología , Reacción en Cadena de la Polimerasa , Células Secretoras de Somatostatina/citología , Factores de Transcripción/genética
9.
Mech Dev ; 126(8-9): 687-99, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19501159

RESUMEN

Pancreatic endocrine cells originate from precursors that express the transcription factor Neurogenin3 (Ngn3). Ngn3 expression is repressed by active Notch signaling. Accordingly, mice with Notch signaling pathway mutations display increased Ngn3 expression and endocrine cell lineage allocation. To determine how the Notch ligand Jagged1 (Jag1) functions during pancreas development, we deleted Jag1 in foregut endoderm and examined postnatal and embryonic endocrine cells and precursors. Postnatal Jag1 mutants display increased Ngn3 expression, alpha-cell mass, and endocrine cell percentage, similar to the early embryonic phenotype of Dll1 and Rbpj mutants. However, in sharp contrast to postnatal animals, Jag1-deficient embryos display increased expression of Notch transcriptional targets and decreased Ngn3 expression, resulting in reduced endocrine lineage allocation. Jag1 acts as an inhibitor of Notch signaling during embryonic pancreas development but an activator of Notch signaling postnatally. Expression of the Notch modifier Manic Fringe (Mfng) is limited to endocrine precursors, providing a possible explanation for the inhibition of Notch signaling by Jag1 during mid-gestation embryonic pancreas development.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Proteínas de la Membrana/fisiología , Páncreas/embriología , Receptores Notch/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Linaje de la Célula , Células Endocrinas/metabolismo , Genotipo , Proteínas Fluorescentes Verdes/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/metabolismo , Ratones , Modelos Biológicos , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA