Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Biol Rep ; 51(1): 212, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273212

RESUMEN

BACKGROUND: Ganoderma boninense is a phytopathogen of oil palm, causing basal and upper stem rot diseases. METHODS: The genome sequence was used as a reference to study gene expression during growth in a starved carbon (C) and nitrogen (N) environment with minimal sugar and sawdust as initial energy sources. This study was conducted to mimic possible limitations of the C-N nutrient sources during the growth of G. boninense in oil palm plantations. RESULTS: Genome sequencing of an isolate collected from a palm tree in West Malaysia generated an assembly of 67.12 Mb encoding 19,851 predicted genes. Transcriptomic analysis from a time course experiment during growth in this starvation media identified differentially expressed genes (DEGs) that were found to be associated with 29 metabolic pathways. During the active growth phase, 26 DEGs were related to four pathways, including secondary metabolite biosynthesis, carbohydrate metabolism, glycan metabolism and mycotoxin biosynthesis. G. boninense genes involved in the carbohydrate metabolism pathway that contribute to the degradation of plant cell walls were up-regulated. Interestingly, several genes associated with the mycotoxin biosynthesis pathway were identified as playing a possible role in pathogen-host interaction. In addition, metabolomics analysis revealed six metabolites, maltose, xylobiose, glucooligosaccharide, glycylproline, dimethylfumaric acid and arabitol that were up-regulated on Day2 of the time course experiment. CONCLUSIONS: This study provides information on genes expressed by G. boninense in metabolic pathways that may play a role in the initial infection of the host.


Asunto(s)
Arecaceae , Ganoderma , Micotoxinas , Arecaceae/genética , Arecaceae/metabolismo , Enfermedades de las Plantas/genética , Perfilación de la Expresión Génica , Ganoderma/genética , Micotoxinas/metabolismo
2.
Gene ; 850: 146930, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36195266

RESUMEN

Resistance to cancer therapeutics represents a leading cause of mortality and is particularly important in cancers, such as triple negative breast cancer, for which no targeted therapy is available, as these are only treated with traditional chemotherapeutics. Cancer, as well as bacterial, drug resistance can be intrinsic, acquired or adaptive. Adaptive cancer drug resistance is gaining attention as a mechanism for the generation of long-term drug resistance as is the case with bacterial antibiotic resistance. We have used a cellular model of triple negative breast cancer (CAL51) and its drug resistance derivative (CALDOX) to gain insight into genome-wide expression changes associated with long-term doxorubicin (a widely used anthracycline for cancer treatment) resistance and doxorubicin-induced stress. Previous work indicates that both naïve and resistance cells have a functional p53-p21 axis controlling cell cycle at G1, although this is not a driver for drug resistance, but down-regulation of TOP2A (topoisomerase IIα). As expected, CALDOX cells have a signature characterized, in addition to down-regulation of TOP2A, by genes and pathways associated with drug resistance, metastasis and stemness. Both CAL51 and CALDOX stress signatures share 12 common genes (TRIM22, FAS, SPATA18, SULF2, CDKN1A, GDF15, MYO6, CXCL5, CROT, EPPK1, ZMAT3 and CD44), with roles in the above-mentioned pathways, indicating that these cells have similar functional responses to doxorubicin relaying on the p53 control of apoptosis. Eight genes are shared by both drug stress signatures (in CAL51 and CALDOX cells) and CALDOX resistant cells (FAS, SULF2, CDKN1A, CXCL5, CD44, SPATA18, TRIM22 and CROT), many of them targets of p53. This corroborates experimental data indicating that CALDOX cells, even in the absence of drug, have activated, at least partially, the p53-p21 axis and DNA damage response. Although this eight-gene signature might be an indicator of adaptive resistance, as this transient phenomenon due to short-term stress may not revert to its original state upon withdrawal of the stressor, previous experimental data indicates that the p53-p21 axis is not responsible for doxorubicin resistance. Importantly, TOP2A is not responsive to doxorubicin treatment and thus absent in both drug stress signatures. This indicates that during the generation of doxorubicin resistance, cells acquire genetic changes likely to be random, leading to down regulation of TOP2A, but selected during the generation of cells due to the presence of drug in the culture medium. This poses a considerable constraint for the development of strategies aimed at avoiding the emergence of drug resistance in the clinic.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/genética
3.
Nutrients ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079843

RESUMEN

Vascular endothelial cells have a critical role in the maintenance of cardiovascular function. Evidence suggests that endothelial function may be compromised under conditions of magnesium deficiency, which increases vulnerability to inflammation. Whole genome transcription analysis was used to explore the acute (24 h) effects of magnesium on human umbilical vascular endothelial cells (HUVEC) cultured in low (0.1 mM) or high (5 mM) concentrations. With low magnesium 2728 transcripts were differentially expressed compared to the 1 mM control cultures and 3030 were differentially expressed with high magnesium. 615 transcripts were differentially expressed under both conditions, of which only 34 showed a concentration-dependent response. Analysis indicated that cellular organisation and biogenesis and key cellular processes such as apoptosis were impacted by both low and high conditions. High magnesium also influenced protein binding functions, intracellular signal transduction, metabolic and catalytic processes. Both conditions impacted on stress-related processes, in particular the inflammatory response. Key mediators of calcium-dependent regulation of gene expression were responsive to both high and low magnesium conditions. The HUVEC transcriptome is highly sensitive to acute changes in the concentration of magnesium in culture medium. The findings of this study support the view that whilst inflammation is an important process that is responsive to magnesium, the function of the endothelium may be impacted by other magnesium-induced changes including maintenance of cellular integrity, receptor expression and metabolic functions. The high proportion of transcripts that did not show a concentration-dependent response suggests variation in magnesium may elicit indirect changes, possibly mediated by other ions.


Asunto(s)
Deficiencia de Magnesio , Magnesio , Células Cultivadas , Endotelio Vascular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/metabolismo , Magnesio/metabolismo , Magnesio/farmacología , Deficiencia de Magnesio/genética , Deficiencia de Magnesio/metabolismo , Transcriptoma , Venas Umbilicales
4.
Commun Biol ; 5(1): 929, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36075960

RESUMEN

The underlying mechanisms driving paternally-programmed metabolic disease in offspring remain poorly defined. We fed male C57BL/6 mice either a control normal protein diet (NPD; 18% protein) or an isocaloric low protein diet (LPD; 9% protein) for a minimum of 8 weeks. Using artificial insemination, in combination with vasectomised male mating, we generated offspring using either NPD or LPD sperm but in the presence of NPD or LPD seminal plasma. Offspring from either LPD sperm or seminal fluid display elevated body weight and tissue dyslipidaemia from just 3 weeks of age. These changes become more pronounced in adulthood, occurring in conjunction with altered hepatic metabolic and inflammatory pathway gene expression. Second generation offspring also display differential tissue lipid abundance, with profiles similar to those of first generation adults. These findings demonstrate that offspring metabolic homeostasis is perturbed in response to a suboptimal paternal diet with the effects still evident within a second generation.


Asunto(s)
Dieta con Restricción de Proteínas , Semen , Animales , Padre , Homeostasis , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
5.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010867

RESUMEN

Poor outcomes associated with diffuse high-grade gliomas occur in both adults and children, despite substantial progress made in the molecular characterisation of the disease. Targeting the metabolic requirements of cancer cells represents an alternative therapeutic strategy to overcome the redundancy associated with cell signalling. Cholesterol is an integral component of cell membranes and is required by cancer cells to maintain growth and may also drive transformation. Here, we show that removal of exogenous cholesterol in the form of lipoproteins from culture medium was detrimental to the growth of two paediatric diffuse glioma cell lines, KNS42 and SF188, in association with S-phase elongation and a transcriptomic program, indicating dysregulated cholesterol homeostasis. Interrogation of metabolic perturbations under lipoprotein-deficient conditions revealed a reduced abundance of taurine-related metabolites and cholesterol ester species. Pharmacological reduction in intracellular cholesterol via decreased uptake and increased export was simulated using the liver X receptor agonist LXR-623, which reduced cellular viability in both adult and paediatric models of diffuse glioma, although the mechanism appeared to be cholesterol-independent in the latter. These results provide proof-of-principle for further assessment of liver X receptor agonists in paediatric diffuse glioma to complement the currently approved therapeutic regimens and expand the options available to clinicians to treat this highly debilitating disease.

6.
Eur J Heart Fail ; 24(6): 1009-1019, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35570197

RESUMEN

AIMS: Chronic heart failure (CHF) is a systemic syndrome with a poor prognosis and a need for novel therapies. We investigated whether whole blood transcriptomic profiling can provide new mechanistic insights into cardiovascular (CV) mortality in CHF. METHODS AND RESULTS: Transcriptome profiles were generated at baseline from 944 CHF patients from the BIOSTAT-CHF study, of whom 626 survived and 318 died from a CV cause during a follow-up of 21 months. Multivariable analysis, including adjustment for cell count, identified 1153 genes (6.5%) that were differentially expressed between those that survived or died and strongly related to a validated clinical risk score for adverse prognosis. The differentially expressed genes mainly belonged to five non-redundant pathways: adaptive immune response, proteasome-mediated ubiquitin-dependent protein catabolic process, T-cell co-stimulation, positive regulation of T-cell proliferation, and erythrocyte development. These five pathways were selectively related (RV coefficients >0.20) with seven circulating protein biomarkers of CV mortality (fibroblast growth factor 23, soluble ST2, adrenomedullin, hepcidin, pentraxin-3, WAP 4-disulfide core domain 2, and interleukin-6) revealing an intricate relationship between immune and iron homeostasis. The pattern of survival-associated gene expression matched with 29 perturbagen-induced transcriptome signatures in the iLINCS drug-repurposing database, identifying drugs, approved for other clinical indications, that were able to reverse in vitro the molecular changes associated with adverse prognosis in CHF. CONCLUSION: Systematic modelling of the whole blood protein-coding transcriptome defined molecular pathways that provide a link between clinical risk factors and adverse CV prognosis in CHF, identifying both established and new potential therapeutic targets.


Asunto(s)
Insuficiencia Cardíaca , Biomarcadores , Enfermedad Crónica , Humanos , Pronóstico , Transcriptoma
7.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216098

RESUMEN

The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields-TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Encéfalo/patología , Proliferación Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Niño , Terapia Combinada/métodos , Terapia por Estimulación Eléctrica/métodos , Estrés del Retículo Endoplásmico/genética , Fase G2/genética , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mitocondrias/genética , Fase de Descanso del Ciclo Celular/genética
8.
Open Biol ; 11(9): 210077, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34493070

RESUMEN

Approximately 90% of cancer-related deaths can be attributed to a tumour's ability to spread. We have identified CG7379, the fly orthologue of human ING1, as a potent invasion suppressor. ING1 is a type II tumour suppressor with well-established roles in the transcriptional regulation of genes that control cell proliferation, response to DNA damage, oncogene-induced senescence and apoptosis. Recent work suggests a possible role for ING1 in cancer cell invasion and metastasis, but the molecular mechanism underlying this observation is lacking. Our results show that reduced expression of CG7379 promotes invasion in vivo in Drosophila, reduces the junctional localization of several adherens and septate junction components, and severely disrupts cell-cell junction architecture. Similarly, ING1 knockdown significantly enhances invasion in vitro and disrupts E-cadherin distribution at cell-cell junctions. A transcriptome analysis reveals that loss of ING1 affects the expression of several junctional and cytoskeletal modulators, confirming ING1 as an invasion suppressor and a key regulator of cell-cell junction integrity.


Asunto(s)
Neoplasias de la Mama/prevención & control , Comunicación Celular , Proteínas de Drosophila/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteína Inhibidora del Crecimiento 1/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Humanos , Proteína Inhibidora del Crecimiento 1/genética , Células MCF-7 , Invasividad Neoplásica , Transcriptoma
9.
Biochem Pharmacol ; 192: 114692, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298004

RESUMEN

Triple-negative metaplastic breast carcinoma (MBC) poses a significant treatment challenge due to lack of targeted therapies and chemotherapy resistance. We isolated a novel MBC cell line, BAS, which showed a molecular and phenotypic profile different from the only other metaplastic cell model, HS578T cells. To gain insight behind chemotherapeutic resistance, we generated doxorubicin (HS-DOX, BAS-DOX) and paclitaxel (HS-TX, BAS-TX) resistant derivatives of both cell lines. Drug sensitivity assays indicated a truly multidrug resistant (MDR) phenotype. Both BAS-DOX and BAS-TX showed up-regulation of FOXC1 and its experimental down-regulation re-sensitized cells to doxorubicin and paclitaxel. Experimental modulation of FOXC1 expression in MCF-7 and MDA-MB-231 cells corroborated its role in MDR. Genome-wide expression analyses identified gene expression signatures characterized by up-regulation of TGFB2, which encodes cytokine TGF-ß2, in both BAS-DOX and BAS-TX cells. Pharmacological inhibition of the TGF-ß pathway with galunisertib led to down-regulation of FOXC1 and increase in drug sensitivity in both BAS-DOX and BAS-TX cells. MicroRNA (miR) expression analyses identified high endogenous miR-495-3p levels in BAS cells that were downregulated in both BAS MDR cells. Transient expression of miR-495-3p mimic in BAS-DOX and BAS-TX cells caused downregulation of TGFB2 and FOXC1 and re-sensitized cells to doxorubicin and paclitaxel, whereas miR-495-3p inhibition in BAS cells led to increase in resistance to both drugs and up-regulation of TGFB2 and FOXC1. Together, these data suggest interplay between miR-495-3p, TGF-ß2 and FOXC1 regulating MDR in MBC and open the exploration of novel therapeutic strategies.


Asunto(s)
Neoplasias de la Mama/metabolismo , Resistencia a Múltiples Medicamentos/fisiología , Resistencia a Antineoplásicos/fisiología , Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Relación Dosis-Respuesta a Droga , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Células MCF-7 , Células Tumorales Cultivadas
10.
J Cell Physiol ; 236(11): 7421-7439, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34008188

RESUMEN

Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.


Asunto(s)
Cartílago Articular/metabolismo , Movimiento Celular , Condrocitos/metabolismo , Canales Iónicos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Osteoartritis de la Rodilla/metabolismo , Células Madre/metabolismo , Transcriptoma , Señalización del Calcio , Cartílago Articular/efectos de los fármacos , Cartílago Articular/patología , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular , Condrocitos/efectos de los fármacos , Condrocitos/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Perfilación de la Expresión Génica , Humanos , Canales Iónicos/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Potenciales de la Membrana , Proteínas de Transporte de Membrana/genética , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , Bloqueadores de los Canales de Potasio/farmacología , Células Madre/efectos de los fármacos , Células Madre/patología , Factores de Tiempo
11.
Metabolites ; 11(4)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919944

RESUMEN

The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme-metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.

12.
Am J Respir Crit Care Med ; 204(4): 431-444, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33882264

RESUMEN

Rationale: Lymphangioleiomyomatosis (LAM) is a multisystem disease that causes lung cysts and respiratory failure. Loss of TSC (tuberous sclerosis complex) gene function results in a clone of "LAM cells" with dysregulated mTOR (mechanistic target of rapamycin) activity. LAM cells and fibroblasts form lung nodules that also contain mast cells, although their significance is unknown. Objectives: To understand the mechanism of mast-cell accumulation and the role of mast cells in the pathogenesis of LAM. Methods: Gene expression was examined using transcriptional profiling and qRT-PCR. Mast cell/LAM nodule interactions were examined in vitro using spheroid TSC2-null cell/fibroblast cocultures and in vivo using an immunocompetent Tsc2-null murine homograft model. Measurements and Main Results: LAM-derived cell/fibroblast cocultures induced multiple CXC chemokines in fibroblasts. LAM lungs had increased tryptase-positive mast cells expressing CXCRs (CXC chemokine receptors) (P < 0.05). Mast cells located around the periphery of LAM nodules were positively associated with the rate of lung function loss (P = 0.016). LAM spheroids attracted mast cells, and this process was inhibited by pharmacologic and CRISPR/cas9 inhibition of CXCR1 and CXCR2. LAM spheroids caused mast-cell tryptase release, which induced fibroblast proliferation and increased LAM-spheroid size (1.36 ± 0.24-fold; P = 0.0019). The tryptase inhibitor APC366 and sodium cromoglycate (SCG) inhibited mast cell-induced spheroid growth. In vivo, SCG reduced mast-cell activation and Tsc2-null lung tumor burden (vehicle: 32.5.3% ± 23.6%; SCG: 5.5% ± 4.3%; P = 0.0035). Conclusions: LAM-cell/fibroblast interactions attract mast cells where tryptase release contributes to disease progression. Repurposing SCG for use in LAM should be studied as an alternative or adjunct to mTOR inhibitor therapy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Linfangioleiomiomatosis/metabolismo , Mastocitos/metabolismo , Triptasas/metabolismo , Adulto , Animales , Biomarcadores de Tumor/genética , Quimiocinas/metabolismo , Progresión de la Enfermedad , Fibroblastos/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/patología , Mastocitos/patología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Esferoides Celulares , Células Tumorales Cultivadas
13.
Mol Cell Endocrinol ; 528: 111242, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33713746

RESUMEN

This study aimed to evaluate the influence of progesterone (concentration and time of exposure) on endometrial decidualisation using an in vitro model cell line: Human Endometrial Stromal Cells (HESCs). HESCs exposed to progesterone (1 and 10 µM) had higher percentages of decidualised cells and higher expression of the decidual marker (Insulin Like Growth Factor Binding Protein 1 (IGFBP1)) compared with those exposed to (0.1 µM). Among those HESCs cultured with 1 µM progesterone for 11 days, the highest rate of morphological differentiation (40-50%) occurred between days 7-9 and IGFBP1 peaked on day 7. The cell-cycle pathway was significantly down-regulated in HESCs exposed to at least 1 µM progesterone regardless of the incubation period. We conclude that exposure to high progesterone concentration for 7-9 days is essential to maximise the process of decidualisation.


Asunto(s)
Endometrio/citología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Progesterona/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Endometrio/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos , Factores de Tiempo , Secuenciación del Exoma
14.
Reprod Biomed Online ; 42(3): 595-608, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33608186

RESUMEN

RESEARCH QUESTION: What is the difference in endometrial transcriptomics between women with normal and with low mid-luteal progesterone during the implantation window? DESIGN: An endometrial biopsy and serum progesterone concentration were taken from participants during the mid-luteal phase (LH+7 to LH+9). A total of 12 participants were recruited and categorized into two groups based on their progesterone concentrations: normal progesterone (>15 ng/ml, n = 6) and low progesterone (<15 ng/ml, n = 6). Global endometrial gene expression between the two groups was compared by microarray techniques. Principal component analysis was used to display the gene's expression pattern. Pathway and gene ontology enrichment analysis were performed to determine the biological mechanism of progesterone on the endometrium. RESULTS: Several key genes related to endometrial receptivity were found to be regulated by progesterone. With regard to gene ontology and pathway analysis, progesterone was shown to be mainly involved in structure morphogenesis predominantly during a process of decidualization, extracellular matrix-receptor interaction and cell adhesion. Distinct differences were observed in the transcriptomic profiles between the two groups, indicating potential impairment of endometrial receptivity in women with suboptimal progesterone concentrations. There was a relatively similar pattern of gene expression between endometrial samples with progesterone concentrations approximately 10 ng/ml and >15 ng/ml. Thus, a progesterone concentration of between 10 and 15 ng/ml appears to be sufficient to induce endometrial receptivity. CONCLUSIONS: Abnormally low progesterone below the threshold of 10-15 ng/ml during the implantation window results in aberrant endometrial gene expression that may affect implantation potential.


Asunto(s)
Implantación del Embrión , Endometrio/metabolismo , Fase Luteínica/sangre , Progesterona/sangre , Transcriptoma , Adulto , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Humanos , Embarazo , Progesterona/deficiencia
15.
F1000Res ; 10: 324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36873457

RESUMEN

Artificial Intelligence (AI) is increasingly used within plant science, yet it is far from being routinely and effectively implemented in this domain. Particularly relevant to the development of novel food and agricultural technologies is the development of validated, meaningful and usable ways to integrate, compare and visualise large, multi-dimensional datasets from different sources and scientific approaches. After a brief summary of the reasons for the interest in data science and AI within plant science, the paper identifies and discusses eight key challenges in data management that must be addressed to further unlock the potential of AI in crop and agronomic research, and particularly the application of Machine Learning (AI) which holds much promise for this domain.

16.
Clin Epigenetics ; 12(1): 145, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33008450

RESUMEN

BACKGROUND: Mesenchymal fibroblasts are ubiquitous cells that maintain the extracellular matrix of organs. Within the lung, airway and parenchymal fibroblasts are crucial for lung development and are altered with disease, but it has been difficult to understand their roles due to the lack of distinct molecular markers. We studied genome-wide DNA methylation and gene expression in airway and parenchymal lung fibroblasts from healthy and asthmatic donors, to identify a robust cell marker and to determine if these cells are molecularly distinct in asthma. RESULTS: Airway (N = 8) and parenchymal (N = 15) lung fibroblasts from healthy individuals differed in the expression of 158 genes, and DNA methylation of 3936 CpGs (Bonferroni adjusted p value < 0.05). Differential DNA methylation between cell types was associated with differential expression of 42 genes, but no single DNA methylation CpG feature (location, effect size, number) defined the interaction. Replication of gene expression and DNA methylation in a second cohort identified TWIST1 gene expression, DNA methylation and protein expression as a cell marker of airway and parenchymal lung fibroblasts, with DNA methylation having 100% predictive discriminatory power. DNA methylation was differentially altered in parenchymal (112 regions) and airway fibroblasts (17 regions) with asthmatic status, with no overlap between regions. CONCLUSIONS: Differential methylation of TWIST1 is a robust cell marker of airway and parenchymal lung fibroblasts. Airway and parenchymal fibroblast DNA methylation are differentially altered in individuals with asthma, and the role of both cell types should be considered in the pathogenesis of asthma.


Asunto(s)
Asma/genética , Metilación de ADN/genética , Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Tejido Parenquimatoso/citología , Proteína 1 Relacionada con Twist/metabolismo , Anciano , Remodelación de las Vías Aéreas (Respiratorias)/genética , Asma/patología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Islas de CpG/genética , Femenino , Expresión Génica , Estudio de Asociación del Genoma Completo/métodos , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
17.
J Exp Bot ; 71(22): 6881-6889, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32898228

RESUMEN

Successful collaborative research is dependent on excellent ideas and innovative experimental approaches, as well as the provision of appropriate support networks. Collaboration requires venues, infrastructures, training facilities, and, perhaps most importantly, a sustained commitment to work together as a community. These activities do not occur without significant effort, yet can be facilitated and overseen by the leadership of a research network that has a clearly defined role to help build resources for their community. Over the past 20 years, this is a role that the UKRI-BBSRC-funded GARNet network has played in the support of the UK curiosity-driven, discovery-led plant science research community. This article reviews the lessons learnt by GARNet in the hope that they can inform the practical implementation of current and future research networks.

18.
iScience ; 23(6): 101237, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32629605

RESUMEN

Metastasis is the leading cause of death for patients with cancer. Consequently it is imperative that we improve our understanding of the molecular mechanisms that underlie progression of tumor growth toward malignancy. Advances in genome characterization technologies have been very successful in identifying commonly mutated or misregulated genes in a variety of human cancers. However, the difficulty in evaluating whether these candidates drive tumor progression remains a major challenge. Using the genetic amenability of Drosophila melanogaster we generated tumors with specific genotypes in the living animal and carried out a detailed systematic loss-of-function analysis to identify conserved genes that enhance or suppress epithelial tumor progression. This enabled the discovery of functional cooperative regulators of invasion and the establishment of a network of conserved invasion suppressors. This includes constituents of the cohesin complex, whose loss of function either promotes individual or collective cell invasion, depending on the severity of effect on cohesin complex function.

19.
Plant Cell Physiol ; 61(6): 1028-1040, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32311031

RESUMEN

Cellular homeostasis is maintained by the proteasomal degradation of regulatory and misfolded proteins, which sustains the amino acid pool. Although proteasomes alleviate stress by removing damaged proteins, mounting evidence indicates that severe stress caused by salt, metal(oids), and some pathogens can impair the proteasome. However, the consequences of proteasome inhibition in plants are not well understood and even less is known about how its malfunctioning alters metabolic activities. Lethality causes by proteasome inhibition in non-photosynthetic organisms stem from amino acid depletion, and we hypothesized that plants respond to proteasome inhibition by increasing amino acid biosynthesis. To address these questions, the short-term effects of proteasome inhibition were monitored for 3, 8 and 48 h in the roots of Brassica napus treated with the proteasome inhibitor MG132. Proteasome inhibition did not affect the pool of free amino acids after 48 h, which was attributed to elevated de novo amino acid synthesis; these observations coincided with increased levels of sulfite reductase and nitrate reductase activities at earlier time points. However, elevated amino acid synthesis failed to fully restore protein synthesis. In addition, transcriptome analysis points to perturbed abscisic acid signaling and decreased sugar metabolism after 8 h of proteasome inhibition. Proteasome inhibition increased the levels of alternative oxidase but decreased aconitase activity, most sugars and tricarboxylic acid metabolites in root tissue after 48 h. These metabolic responses occurred before we observed an accumulation of reactive oxygen species. We discuss how the metabolic response to proteasome inhibition and abiotic stress partially overlap in plants.


Asunto(s)
Aminoácidos/biosíntesis , Brassica napus/metabolismo , Raíces de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Adenosina Trifosfato/metabolismo , Brassica napus/efectos de los fármacos , Brassica napus/crecimiento & desarrollo , Respiración de la Célula , Dimetilsulfóxido/farmacología , Glutamato-Amoníaco Ligasa/metabolismo , Consumo de Oxígeno , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA