Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Cardiovasc Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717632

RESUMEN

AIMS: Vascular aging is characterized by vessel stiffening, with increased deposition of extracellular matrix (ECM) proteins including collagens. Oxidative DNA damage occurs in vascular aging, but how it regulates ECM proteins and vascular stiffening is unknown. We sought to determine the relationship between oxidative DNA damage and ECM regulatory proteins in vascular aging. METHODS AND RESULTS: We examined oxidative DNA damage, the major base excision repair (BER) enzyme 8-Oxoguanine DNA Glycosylase (Ogg1) and its regulators, multiple physiological markers of aging, and ECM proteomics in mice from 22-72w. Vascular aging was associated with increased oxidative DNA damage, and decreased expression of Ogg1, its active acetylated form, its acetylation regulatory proteins P300 and CBP, and the transcription factor Foxo3a. Vascular stiffness was examined in vivo in control, Ogg1-/-, or mice with vascular smooth muscle cell-specific expression of Ogg1+ (Ogg1) or an inactive mutation (Ogg1KR). Ogg1-/- and Ogg1KR mice showed reduced arterial compliance and distensibility, and increased stiffness and pulse pressure, whereas Ogg1 expression normalised all parameters to 72w. ECM proteomics identified major changes in collagens with aging, and downregulation of the ECM regulatory proteins Protein 6-lysyl oxidase (LOX) and WNT1-inducible-signaling pathway protein 2 (WISP2). Ogg1 overexpression upregulated LOX and WISP2 both in vitro and in vivo, and downregulated Transforming growth factor ß1 (TGFb1) and Collagen 4α1 in vivo compared with Ogg1KR. Foxo3a activation induced Lox, while Wnt3 induction of Wisp2 also upregulated LOX and Foxo3a, and downregulated TGFß1 and fibronectin 1. In humans, 8-oxo-G increased with vascular stiffness, while active OGG1 reduced with both age and stiffness. CONCLUSIONS: Vascular aging is associated with oxidative DNA damage, downregulation of major BER proteins, and changes in multiple ECM structural and regulatory proteins. Ogg1 protects against vascular aging, associated with changes in ECM regulatory proteins including LOX and WISP2.

2.
Basic Res Cardiol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758338

RESUMEN

The right ventricle (RV) differs developmentally, anatomically and functionally from the left ventricle (LV). Therefore, characteristics of LV adaptation to chronic pressure overload cannot easily be extrapolated to the RV. Mitochondrial abnormalities are considered a crucial contributor in heart failure (HF), but have never been compared directly between RV and LV tissues and cardiomyocytes. To identify ventricle-specific mitochondrial molecular and functional signatures, we established rat models with two slowly developing disease stages (compensated and decompensated) in response to pulmonary artery banding (PAB) or ascending aortic banding (AOB). Genome-wide transcriptomic and proteomic analyses were used to identify differentially expressed mitochondrial genes and proteins and were accompanied by a detailed characterization of mitochondrial function and morphology. Two clearly distinguishable disease stages, which culminated in a comparable systolic impairment of the respective ventricle, were observed. Mitochondrial respiration was similarly impaired at the decompensated stage, while respiratory chain activity or mitochondrial biogenesis were more severely deteriorated in the failing LV. Bioinformatics analyses of the RNA-seq. and proteomic data sets identified specifically deregulated mitochondrial components and pathways. Although the top regulated mitochondrial genes and proteins differed between the RV and LV, the overall changes in tissue and cardiomyocyte gene expression were highly similar. In conclusion, mitochondrial dysfuntion contributes to disease progression in right and left heart failure. Ventricle-specific differences in mitochondrial gene and protein expression are mostly related to the extent of observed changes, suggesting that despite developmental, anatomical and functional differences mitochondrial adaptations to chronic pressure overload are comparable in both ventricles.

4.
Arterioscler Thromb Vasc Biol ; 44(4): 898-914, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328934

RESUMEN

BACKGROUND: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular disease, the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a contractile to a synthetic phenotype characterized by an increased proliferation, migration, production of ECM (extracellular matrix) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of cardiovascular disease, including coronary artery disease, stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies. METHODS: Using human aortic SMCs from 123 multiancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted liquid chromatography-tandem mass spectrometry-based proteomic analysis of the conditioned media. RESULTS: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 (latent-transforming growth factor beta-binding protein 1) in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. CONCLUSIONS: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Músculo Liso Vascular/metabolismo , Aorta/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/metabolismo , Células Cultivadas
5.
J Am Heart Assoc ; 13(3): e031825, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38293910

RESUMEN

BACKGROUND: Dyslipidemia is an independent risk factor for coronary heart disease (CHD). Standard lipid panel cannot capture the complexity of the blood lipidome (ie, all molecular lipids in the blood). To date, very few large-scale epidemiological studies have assessed the full spectrum of the blood lipidome on risk of CHD, especially in a longitudinal setting. METHODS AND RESULTS: Using an untargeted liquid chromatography-mass spectrometry, we repeatedly measured 1542 lipid species from 1835 unique American Indian participants who attended 2 clinical visits (≈5.5 years apart) and followed up to 17.8 years in the Strong Heart Family Study (SHFS). We first identified baseline lipid species associated with risk of CHD, followed by replication in a European population. The model adjusted for age, sex, body mass index, smoking, hypertension, diabetes, low-density lipoprotein cholesterol, estimated glomerular filtration rate, education, and physical activity at baseline. We then examined the longitudinal association between changes in lipid species and changes in cardiovascular risk factors during follow-up. Multiple testing was controlled by the false discovery rate. We found that baseline levels of multiple lipid species (eg, phosphatidylcholines, phosphatidylethanolamines, and ceramides) were associated with the risk of CHD and improved the prediction accuracy over conventional risk factors in American Indian people. Some identified lipids in American Indian people were replicated in European people. Longitudinal changes in multiple lipid species (eg, acylcarnitines, phosphatidylcholines, and triacylglycerols) were associated with changes in cardiovascular risk factors. CONCLUSIONS: Baseline plasma lipids and their longitudinal changes over time are associated with risk of CHD. These findings provide novel insights into the role of dyslipidemia in CHD.


Asunto(s)
Enfermedad Coronaria , Dislipidemias , Humanos , Indio Americano o Nativo de Alaska , Enfermedad Coronaria/diagnóstico , Enfermedad Coronaria/epidemiología , Dislipidemias/diagnóstico , Dislipidemias/epidemiología , Dislipidemias/complicaciones , Lipidómica , Fosfatidilcolinas , Factores de Riesgo , Triglicéridos , Estados Unidos
6.
Coron Artery Dis ; 35(2): 122-134, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38009375

RESUMEN

AIM: Acute injury and subsequent remodelling responses to ST-segment elevation myocardial infarction (STEMI) are major determinants of clinical outcome. Current imaging and plasma biomarkers provide delayed readouts of myocardial injury and recovery. Here, we sought to systematically characterize all microRNAs (miRs) released during the acute phase of STEMI and relate miR release to magnetic resonance imaging (MRI) findings to predict acute and late responses to STEMI, from a single early blood sample. METHODS AND RESULTS: miRs were quantified in blood samples obtained from patients after primary PCI (PPCI) for STEMI. Cardiac MRI (cMRI) was performed to quantify myocardial edema, infarct size and salvage index. Regression models were constructed to predict these outcomes measures, which were then tested with a validation cohort. Transcoronary miR release was quantified from paired measurements of coronary artery and coronary sinus samples. A cell culture model was used to identify endothelial cell-derived miRs.A total of 72 patients undergoing PPCI for acute STEMI underwent miR analysis and cMRI. About >200 miRs were detectable in plasma after STEMI, from which 128 miRs were selected for quantification in all patients. Known myocardial miRs demonstrated a linear correlation with troponin release, and these increased across the transcoronary gradient. We identified novel miRs associated with microvascular injury and myocardial salvage. Regression models were constructed using a training cohort, then tested in a validation cohort, and predicted myocardial oedema, infarct size and salvage index. CONCLUSION: Analysis of miR release after STEMI identifies biomarkers that predict both acute and late outcomes after STEMI. A novel miR-based biomarker score enables the estimation of area at risk, late infarct size and salvage index from a single blood sample 6 hours after PPCI, providing a simple and rapid alternative to serial cMRI characterization of STEMI outcome.


Asunto(s)
Infarto de la Pared Anterior del Miocardio , MicroARNs , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/genética , Infarto del Miocardio con Elevación del ST/terapia , Intervención Coronaria Percutánea/métodos , Infarto de la Pared Anterior del Miocardio/complicaciones , MicroARNs/genética , Biomarcadores , Células Endoteliales , Resultado del Tratamiento
7.
Clin Res Cardiol ; 113(5): 672-679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37847314

RESUMEN

The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials.


Asunto(s)
Investigación Biomédica , Sistema Cardiovascular , Humanos , Manejo de Datos , Reproducibilidad de los Resultados , Corazón
8.
J Mol Cell Cardiol Plus ; 6: 100056, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143961

RESUMEN

Background: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disorder, characterized by cardiomyocyte hypertrophy, cardiomyocyte disarray and fibrosis, which has a prevalence of ∼1: 200-500 and predisposes individuals to heart failure and sudden death. The mechanisms through which diverse HCM-causing mutations cause cardiac dysfunction remain mostly unknown and their identification may reveal new therapeutic avenues. MicroRNAs (miRNAs) have emerged as critical regulators of gene expression and disease phenotype in various pathologies. We explored whether miRNAs could play a role in HCM pathogenesis and offer potential therapeutic targets. Methods and results: Using high-throughput miRNA expression profiling and qPCR analysis in two distinct mouse models of HCM, we found that miR-199a-3p expression levels are upregulated in mutant mice compared to age- and treatment-matched wild-type mice. We also found that miR-199a-3p expression is enriched in cardiac non-myocytes compared to cardiomyocytes. When we expressed miR-199a-3p mimic in cultured murine primary cardiac fibroblasts and analyzed the conditioned media by proteomics, we found that several extracellular matrix (ECM) proteins (e.g., TSP2, FBLN3, COL11A1, LYOX) were differentially secreted (data are available via ProteomeXchange with identifier PXD042904). We confirmed our proteomics findings by qPCR analysis of selected mRNAs and demonstrated that miR-199a-3p mimic expression in cardiac fibroblasts drives upregulation of ECM gene expression, including Tsp2, Fbln3, Pcoc1, Col1a1 and Col3a1. To examine the role of miR-199a-3p in vivo, we inhibited its function using lock-nucleic acid (LNA)-based inhibitors (antimiR-199a-3p) in an HCM mouse model. Our results revealed that progression of cardiac fibrosis is attenuated when miR-199a-3p function is inhibited in mild-to-moderate HCM. Finally, guided by computational target prediction algorithms, we identified mRNAs Cd151 and Itga3 as direct targets of miR-199a-3p and have shown that miR-199a-3p mimic expression negatively regulates AKT activation in cardiac fibroblasts. Conclusions: Altogether, our results suggest that miR-199a-3p may contribute to cardiac fibrosis in HCM through its actions in cardiac fibroblasts. Thus, inhibition of miR-199a-3p in mild-to-moderate HCM may offer therapeutic benefit in combination with complementary approaches that target the primary defect in cardiac myocytes.

9.
Cell Rep ; 42(11): 113380, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37950869

RESUMEN

Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.


Asunto(s)
Aterosclerosis , Enfermedad de la Arteria Coronaria , Infarto del Miocardio , Placa Aterosclerótica , Humanos , Estudio de Asociación del Genoma Completo , Aterosclerosis/genética , Enfermedad de la Arteria Coronaria/genética , Miocitos del Músculo Liso , Proteínas de Unión al Calcio/genética
10.
medRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37986932

RESUMEN

Background: Smooth muscle cells (SMCs), which make up the medial layer of arteries, are key cell types involved in cardiovascular diseases (CVD), the leading cause of mortality and morbidity worldwide. In response to microenvironment alterations, SMCs dedifferentiate from a "contractile" to a "synthetic" phenotype characterized by an increased proliferation, migration, production of extracellular matrix (ECM) components, and decreased expression of SMC-specific contractile markers. These phenotypic changes result in vascular remodeling and contribute to the pathogenesis of CVD, including coronary artery disease (CAD), stroke, hypertension, and aortic aneurysms. Here, we aim to identify the genetic variants that regulate ECM secretion in SMCs and predict the causal proteins associated with vascular disease-related loci identified in genome-wide association studies (GWAS). Methods: Using human aortic SMCs from 123 multi-ancestry healthy heart transplant donors, we collected the serum-free media in which the cells were cultured for 24 hours and conducted Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of the conditioned media. Results: We measured the abundance of 270 ECM and related proteins. Next, we performed protein quantitative trait locus mapping (pQTL) and identified 20 loci associated with secreted protein abundance in SMCs. We functionally annotated these loci using a colocalization approach. This approach prioritized the genetic variant rs6739323-A at the 2p22.3 locus, which is associated with lower expression of LTBP1 in SMCs and atherosclerosis-prone areas of the aorta, and increased risk for SMC calcification. We found that LTBP1 expression is abundant in SMCs, and its expression at mRNA and protein levels was reduced in unstable and advanced atherosclerotic plaque lesions. Conclusions: Our results unravel the SMC proteome signature associated with vascular disorders, which may help identify potential therapeutic targets to accelerate the pathway to translation.

11.
Stem Cell Reports ; 18(11): 2123-2137, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37802072

RESUMEN

Primary carnitine deficiency (PCD) is an autosomal recessive monogenic disorder caused by mutations in SLC22A5. This gene encodes for OCTN2, which transports the essential metabolite carnitine into the cell. PCD patients suffer from muscular weakness and dilated cardiomyopathy. Two OCTN2-defective human induced pluripotent stem cell lines were generated, carrying a full OCTN2 knockout and a homozygous OCTN2 (N32S) loss-of-function mutation. OCTN2-defective genotypes showed lower force development and resting length in engineered heart tissue format compared with isogenic control. Force was sensitive to fatty acid-based media and associated with lipid accumulation, mitochondrial alteration, higher glucose uptake, and metabolic remodeling, replicating findings in animal models. The concordant results of OCTN2 (N32S) and -knockout emphasizes the relevance of OCTN2 for these findings. Importantly, genome-wide analysis and pharmacological inhibitor experiments identified ferroptosis, an iron- and lipid-dependent cell death pathway associated with fibroblast activation as a novel PCD cardiomyopathy disease mechanism.


Asunto(s)
Cardiomiopatías , Ferroptosis , Células Madre Pluripotentes Inducidas , Animales , Humanos , Proteínas de Transporte de Catión Orgánico/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Cardiomiopatías/genética , Lípidos
12.
Nat Commun ; 14(1): 5552, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689702

RESUMEN

The microvasculature plays a key role in tissue perfusion and exchange of gases and metabolites. In this study we use human blood vessel organoids (BVOs) as a model of the microvasculature. BVOs fully recapitulate key features of the human microvasculature, including the reliance of mature endothelial cells on glycolytic metabolism, as concluded from metabolic flux assays and mass spectrometry-based metabolomics using stable tracing of 13C-glucose. Pharmacological targeting of PFKFB3, an activator of glycolysis, using two chemical inhibitors results in rapid BVO restructuring, vessel regression with reduced pericyte coverage. PFKFB3 mutant BVOs also display similar structural remodelling. Proteomic analysis of the BVO secretome reveal remodelling of the extracellular matrix and differential expression of paracrine mediators such as CTGF. Treatment with recombinant CTGF recovers microvessel structure. In this work we demonstrate that BVOs rapidly undergo restructuring in response to metabolic changes and identify CTGF as a critical paracrine regulator of microvascular integrity.


Asunto(s)
Células Endoteliales , Proteómica , Humanos , Bioensayo , Microvasos , Organoides , Monoéster Fosfórico Hidrolasas
13.
Nat Commun ; 14(1): 5764, 2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37717009

RESUMEN

The expanded hexanucleotide GGGGCC repeat mutation in the C9orf72 gene is the main genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Under one disease mechanism, sense and antisense transcripts of the repeat are predicted to bind various RNA-binding proteins, compromise their function and cause cytotoxicity. Here we identify phenylalanine-tRNA synthetase (FARS) subunit alpha (FARSA) as the main interactor of the CCCCGG antisense repeat RNA in cytosol. The aminoacylation of tRNAPhe by FARS is inhibited by antisense RNA, leading to decreased levels of charged tRNAPhe. Remarkably, this is associated with global reduction of phenylalanine incorporation in the proteome and decrease in expression of phenylalanine-rich proteins in cellular models and patient tissues. In conclusion, this study reveals functional inhibition of FARSA in the presence of antisense RNA repeats. Compromised aminoacylation of tRNA could lead to impairments in protein synthesis and further contribute to C9orf72 mutation-associated pathology.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Aminoacilación de ARN de Transferencia , Aminoacilación , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Proteína C9orf72/genética , Fenilalanina/genética , ARN de Transferencia de Fenilalanina , ARN sin Sentido
14.
Circ Res ; 133(7): 542-558, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37646165

RESUMEN

BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.


Asunto(s)
Aterosclerosis , Calcinosis , Femenino , Humanos , Masculino , Proteómica , Caracteres Sexuales , Versicanos , alfa-2-Glicoproteína-HS
16.
Thromb Haemost ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37595625

RESUMEN

OBJECTIVE: The effect of the PCSK9 (proprotein convertase subtilisin/kexin type 9) inhibitor alirocumab on platelet aggregation among patients with acute myocardial infarction (AMI) remains unknown. We aimed to explore the effect of alirocumab added to high-intensity statin therapy on P2Y12 reaction unit (PRU) among AMI patients receiving dual antiplatelet therapy (DAPT) with a potent P2Y12 inhibitor (ticagrelor or prasugrel). In addition, we assessed circulating platelet-derived noncoding RNAs (microRNAs and YRNAs). METHODS: This was a prespecified, powered, pharmacodynamic substudy of the PACMAN trial, a randomized, double-blind trial comparing biweekly alirocumab (150 mg) versus placebo in AMI patients undergoing percutaneous coronary intervention. Patients recruited at Bern University Hospital, receiving DAPT with a potent P2Y12 inhibitor, and adherent to the study drug (alirocumab or placebo) were analyzed for the current study. The primary endpoint was PRU at 4 weeks after study drug initiation as assessed by VerifyNow P2Y12 point-of-care assays. RESULTS: Among 139 randomized patients, the majority of patients received ticagrelor DAPT at 4 weeks (57 [86.4%] in the alirocumab group vs. 69 [94.5%] in the placebo group, p = 0.14). There were no significant differences in the primary endpoint PRU at 4 weeks between groups (12.5 [interquartile range, IQR: 27.0] vs. 19.0 [IQR: 30.0], p = 0.26). Consistent results were observed in 126 patients treated with ticagrelor (13.0 [IQR: 20.0] vs. 18.0 [IQR: 27.0], p = 0.28). Similarly, platelet-derived noncoding RNAs did not significantly differ between groups. CONCLUSION: Among AMI patients receiving DAPT with a potent P2Y12 inhibitor, alirocumab had no significant effect on platelet reactivity as assessed by PRU and platelet-derived noncoding RNAs.

17.
Mol Cell Proteomics ; 22(8): 100600, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37343697

RESUMEN

High-density lipoprotein (HDL) levels are reduced in patients with coronavirus disease 2019 (COVID-19), and the extent of this reduction is associated with poor clinical outcomes. While lipoproteins are known to play a key role during the life cycle of the hepatitis C virus, their influence on coronavirus (CoV) infections is poorly understood. In this study, we utilize cross-linking mass spectrometry (XL-MS) to determine circulating protein interactors of the severe acute respiratory syndrome (SARS)-CoV-2 spike glycoprotein. XL-MS of plasma isolated from patients with COVID-19 uncovered HDL protein interaction networks, dominated by acute-phase serum amyloid proteins, whereby serum amyloid A2 was shown to bind to apolipoprotein (Apo) D. XL-MS on isolated HDL confirmed ApoD to interact with SARS-CoV-2 spike but not SARS-CoV-1 spike. Other direct interactions of SARS-CoV-2 spike upon HDL included ApoA1 and ApoC3. The interaction between ApoD and spike was further validated in cells using immunoprecipitation-MS, which uncovered a novel interaction between both ApoD and spike with membrane-associated progesterone receptor component 1. Mechanistically, XL-MS coupled with data-driven structural modeling determined that ApoD may interact within the receptor-binding domain of the spike. However, ApoD overexpression in multiple cell-based assays had no effect upon viral replication or infectivity. Thus, SARS-CoV-2 spike can bind to apolipoproteins on HDL, but these interactions do not appear to alter infectivity.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Lipoproteínas HDL/metabolismo , Unión Proteica , Espectrometría de Masas
18.
Mol Cell Proteomics ; 22(8): 100607, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356494

RESUMEN

Biological networks have been widely used in many different diseases to identify potential biomarkers and design drug targets. In the present review, we describe the main computational techniques for reconstructing and analyzing different types of protein networks and summarize the previous applications of such techniques in cardiovascular diseases. Existing tools are critically compared, discussing when each method is preferred such as the use of co-expression networks for functional annotation of protein clusters and the use of directed networks for inferring regulatory associations. Finally, we are presenting examples of reconstructing protein networks of different types (regulatory, co-expression, and protein-protein interaction networks). We demonstrate the necessity to reconstruct networks separately for each cardiovascular tissue type and disease entity and provide illustrative examples of the importance of taking into consideration relevant post-translational modifications. Finally, we demonstrate and discuss how the findings of protein networks could be interpreted using single-cell RNA-sequencing data.


Asunto(s)
Redes Reguladoras de Genes , Proteómica , Mapas de Interacción de Proteínas , Proteínas , Biología Computacional/métodos
20.
Sci Transl Med ; 15(688): eadd4248, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947592

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive cardiac disease. Many patients with ACM harbor mutations in desmosomal genes, predominantly in plakophilin-2 (PKP2). Although the genetic basis of ACM is well characterized, the underlying disease-driving mechanisms remain unresolved. Explanted hearts from patients with ACM had less PKP2 compared with healthy hearts, which correlated with reduced expression of desmosomal and adherens junction (AJ) proteins. These proteins were also disorganized in areas of fibrotic remodeling. In vitro data from human-induced pluripotent stem cell-derived cardiomyocytes and microtissues carrying the heterozygous PKP2 c.2013delC pathogenic mutation also displayed impaired contractility. Knockin mice carrying the equivalent heterozygous Pkp2 c.1755delA mutation recapitulated changes in desmosomal and AJ proteins and displayed cardiac dysfunction and fibrosis with age. Global proteomics analysis of 4-month-old heterozygous Pkp2 c.1755delA hearts indicated involvement of the ubiquitin-proteasome system (UPS) in ACM pathogenesis. Inhibition of the UPS in mutant mice increased area composita proteins and improved calcium dynamics in isolated cardiomyocytes. Additional proteomics analyses identified lysine ubiquitination sites on the desmosomal proteins, which were more ubiquitinated in mutant mice. In summary, we show that a plakophilin-2 mutation can lead to decreased desmosomal and AJ protein expression through a UPS-dependent mechanism, which preceded cardiac remodeling. These findings suggest that targeting protein degradation and improving desmosomal protein stability may be a potential therapeutic strategy for the treatment of ACM.


Asunto(s)
Cardiomiopatías , Placofilinas , Humanos , Ratones , Animales , Lactante , Proteolisis , Placofilinas/genética , Placofilinas/metabolismo , Miocitos Cardíacos/metabolismo , Mutación/genética , Cardiomiopatías/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA