Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Food Chem ; 460(Pt 1): 140395, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39047486

RESUMEN

Precise monitoring of nitrite from real samples has gained significant attention due to its detrimental impact on human health. Herein, we have fabricated poly(3,4-ethylenedioxythiophene) functionalized carbon matrix suspended Cu nanoparticles (PEDOT-C@Cu-NPs) through a facile green synthesis approach. Additionally, we have used machine learning (ML) to optimize experimental parameters such as pH, drying time, and concentrations to predict current of the designed electrochemical sensor. The ML optimized concentration of fabricated C@Cu-NPs was further functionalized by PEDOT (π-electron mediator). The designed PEDOT functionalized C@Cu-NPs (PEDOT-C@Cu-NPs) electrode has shown excellent electro-oxidation capability towards NO2- ions due to highly exposed Cu facets, defects rich graphitic C and high π-electron density. Additionally, the designed material has shown low detection limit (3.91 µM), high sensitivity (0.6372 µA/µM/cm2), and wide linear range (5-580 µM). Additionally, the designed electrode has shown higher electrochemical sensing efficacy against real time monitoring from pickled vegetables extract.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Cobre , Aprendizaje Automático , Nanopartículas del Metal , Nitritos , Polímeros , Verduras , Polímeros/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Verduras/química , Nitritos/análisis , Nitritos/química , Cobre/química , Nanopartículas del Metal/química , Técnicas Electroquímicas , Carbono/química , Contaminación de Alimentos/análisis , Límite de Detección
2.
Dalton Trans ; 53(31): 13012-13021, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39028037

RESUMEN

Transition metal oxide nanocomposites with heterostructures have gained a lot of attention for use in supercapacitors owing to their low cost, high surface area, fast transport of ions and electrons and high specific capacitance due to efficacious interplay between the electrode and the electrolytes. In this study, we fabricated tri-metallic Cu, Mn, Ni(CMNO), bi-metallic Mn, Ni(MNO) and mono-metallic Ni(NO) oxides through a facile hydrothermal route. All the fabricated materials were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDX), and their electrochemical properties were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). The CMNO material showed remarkable electrochemical performance with a specific capacitance of 790.63 F g-1 at a current density of 1 A g-1, surpassing the performance of MNO (438.4 F g-1) and NO (290.82 F g-1). Furthermore, CMNO showed high cycling stability with a retention of 96.7% specific capacitance after 8000 cycles. Based on remarkable and unique properties, the CMNO material is regarded as a promising material for new-generation pseudo-capacitor applications.

3.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36551078

RESUMEN

A novel, metal-free electrode based on heteroatom (S, N, P, O)-doped carbon nanoplates (SNPO-CPL) modifying lead pencil graphite (LPG) has been synthesized by carbonizing a unique heteroatom (S, N, P, O)-containing novel polymer, poly(cyclcotriphosphazene-co-2,5-dioxy-1,4-dithiane) (PCD), for precise screening of dopamine (DA). The designed electrode, SNPO-CPL-800, with optimized percentage of S, N, P, O doping through the sp2-carbon chain, and a large number of surface defects (thus leading to a maximum exposition number of catalytic active sites) led to fast molecular diffusion through the micro-porous structure and facilitated strong binding interaction with the targeted molecules in the interactive signaling transducer at the electrode-electrolyte interface. The designed SNPO-CPL-800 electrode exhibited a sensitive and selective response towards DA monitoring, with a limit of detection (LOD) of 0.01 nM. We also monitored DA levels in commercially available chicken samples using the SNPO-CPL-800 electrode even in the presence of interfering species, thus proving the effectiveness of the designed electrode for the precise monitoring of DA in real samples. This research shows there is a strong potential for opening new windows for ultrasensitive DA monitoring with metal-free electrodes.


Asunto(s)
Carbono , Grafito , Animales , Carbono/química , Dopamina/química , Pollos , Grafito/química , Límite de Detección , Electrodos , Técnicas Electroquímicas
4.
Nanotechnology ; 32(37)2021 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-34044383

RESUMEN

Magnetic proximity effect can be used to tailor the magnetic ground state and valley polarization in the monolayer of transition metal dichalcogenides. Thus, we explore the effect of biaxial tensile and compressive strain on valley polarization in the WSe2/CrSnSe3heterostructures with different stacking orders systematically. The indirect band gaps in the two most stable stackings; hollow (0.27 eV) and top (0.33 eV) were further enhanced to 0.35 eV under tensile strain while suppressed to almost 0.13 eV under compressive strain. The heterostructures had a FM ground state with a total magnetic moment per unit cell of 6µBin pristine as well as strained structures. In hollow stacking and compressively strained structures, we obtained a perpendicular magnetocrystalline anisotropy, while the top stacking and tensile strain structures had small in-plane anisotropy. An enhancement was found in Curie temperature from 73 K in pristine to 128 K in a 6% tensile strained structure. The valley splittings found in pristine hollow (4 meV) and top (9 meV) stacked heterostructures were further enhanced to 29 meV and 22 meV at 5% compressive strain respectively. This enhancement was attributed to the increased spatial dependence of the charge density along K+and K-directions of the Brillouin zone, which give rise to the different local dipolar fields at these valleys. Our results suggest that strain could be an effective way to control or tune the valley splitting in WSe2/CrSnSe3heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA