Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mob DNA ; 15(1): 10, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711146

RESUMEN

BACKGROUND: The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS: Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS: The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.

2.
Sci Rep ; 14(1): 4898, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418601

RESUMEN

Chameleons are well-known lizards with unique morphology and physiology, but their sex determination has remained poorly studied. Madagascan chameleons of the genus Furcifer have cytogenetically distinct Z and W sex chromosomes and occasionally Z1Z1Z2Z2/Z1Z2W multiple neo-sex chromosomes. To identify the gene content of their sex chromosomes, we microdissected and sequenced the sex chromosomes of F. oustaleti (ZZ/ZW) and F. pardalis (Z1Z1Z2Z2/Z1Z2W). In addition, we sequenced the genomes of a male and a female of F. lateralis (ZZ/ZW) and F. pardalis and performed a comparative coverage analysis between the sexes. Despite the notable heteromorphy and distinctiveness in heterochromatin content, the Z and W sex chromosomes share approximately 90% of their gene content. This finding demonstrates poor correlation of the degree of differentiation of sex chromosomes at the cytogenetic and gene level. The test of homology based on the comparison of gene copy number variation revealed that female heterogamety with differentiated sex chromosomes remained stable in the genus Furcifer for at least 20 million years. These chameleons co-opted for the role of sex chromosomes the same genomic region as viviparous mammals, lacertids and geckos of the genus Paroedura, which makes these groups excellent model for studies of convergent and divergent evolution of sex chromosomes.


Asunto(s)
Variaciones en el Número de Copia de ADN , Lagartos , Animales , Femenino , Masculino , Cromosomas Sexuales/genética , Secuencia de Bases , Lagartos/genética , Mamíferos/genética , Evolución Molecular , Procesos de Determinación del Sexo/genética
3.
Genes (Basel) ; 14(1)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36672918

RESUMEN

Geckos (Gekkota), the species-rich clade of reptiles with more than 2200 currently recognized species, demonstrate a remarkable variability in diploid chromosome numbers (2n = 16-48) and mode of sex determination. However, only a small fraction of gekkotan species have been studied with cytogenetic methods. Here, we applied both conventional (karyotype reconstruction and C-banding) and molecular (fluorescence in situ hybridization with probes for rDNA loci and telomeric repeats) cytogenetic analyses in seven species of geckos, namely Blaesodactylus boivini, Chondrodactylus laevigatus, Gekko badenii, Gekko cf. lionotum, Hemidactylus sahgali, Homopholis wahlbergii (Gekkonidae) and Ptyodactylus togoensis (Phyllodactylidae), in order to provide further insights into the evolution of karyotypes in geckos. Our analysis revealed the presence of interstitial telomeric repeats in four species, but we were not able to conclude if they are remnants of previous chromosome rearrangements or were formed by an accumulation of telomeric-like satellite motifs. Even though sex chromosomes were previously identified in several species from the genera Hemidactylus and Gekko by cytogenetic and/or genomic methods, they were not detected by us in any examined species. Our examined species either have poorly differentiated sex chromosomes or, possibly, environmental sex determination. Future studies should explore the effect of temperature and conduct genome-wide analyses in order to identify the mode of sex determination in these species.


Asunto(s)
Lagartos , Animales , Lagartos/genética , Hibridación Fluorescente in Situ , Estudio de Asociación del Genoma Completo , Cromosomas Sexuales/genética , Cariotipificación
4.
Biology (Basel) ; 10(9)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34571721

RESUMEN

Tamarins are a distinct group of small sized New World monkeys with complex phylogenetic relationships and poorly studied cytogenetic traits. In this study, we applied molecular cytogenetic analyses by fluorescence in situ hybridization with probes specific for telomeric sequences and ribosomal DNA loci after DAPI/CMA3 staining on metaphases from five tamarin species, namely Leontocebus fuscicollis, Leontopithecus rosalia, Saguinus geoffroyi, Saguinus mystax and Saguinus oedipus, with the aim to investigate the distribution of repetitive sequences and their possible role in genome evolution. Our analyses revealed that all five examined species show similar karyotypes, 2n = 46, which differ mainly in the morphology of chromosome pairs 16-17 and 19-22, due to the diverse distribution of rDNA loci, the amplification of telomeric-like sequences, the presence of heterochromatic blocks and/or putative chromosomal rearrangements, such as inversions. The differences in cytogenetic traits between species of tamarins are discussed in a comparative phylogenetic framework, and in addition to data from previous studies, we underline synapomorphies and apomorphisms that appeared during the diversification of this group of New World monkeys.

5.
Genes (Basel) ; 12(3)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668210

RESUMEN

Chondrichthyes occupy a key position in the phylogeny of vertebrates. The complete sequence of the mitochondrial genome (mitogenome) of four species of sharks and five species of rays was obtained by whole genome sequencing (DNA-seq) in the Illumina HiSeq2500 platform. The arrangement and features of the genes in the assembled mitogenomes were identical to those found in vertebrates. Both Maximum Likelihood (ML) and Bayesian Inference (BI) analyses were used to reconstruct the phylogenetic relationships among 172 species (including 163 mitogenomes retrieved from GenBank) based on the concatenated dataset of 13 individual protein coding genes. Both ML and BI analyses did not support the "Hypnosqualea" hypothesis and confirmed the monophyly of sharks and rays. The broad notion in shark phylogeny, namely the division of sharks into Galeomorphii and Squalomorphii and the monophyly of the eight shark orders, was also supported. The phylogenetic placement of all nine species sequenced in this study produced high statistical support values. The present study expands our knowledge on the systematics, genetic differentiation, and conservation genetics of the species studied, and contributes to our understanding of the evolutionary history of Chondrichthyes.


Asunto(s)
Genoma Mitocondrial , Filogenia , Tiburones/genética , Rajidae/genética , Animales , Tiburones/clasificación , Rajidae/clasificación
6.
Mol Ecol Resour ; 21(6): 2013-2021, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33720488

RESUMEN

Embryos, juveniles, and even adults of many bird species lack pronounced external sexually dimorphic characteristics. Accurate identification of sex is crucial for research (e.g., developmental, population, and evolutionary studies), management of wildlife species, and captive breeding programmes for both conservation and poultry. An accurate molecular sexing method applicable across the entire bird radiation is theoretically possible thanks to the long-term stability of their ZZ/ZW sex chromosomes, but current methods are not applicable in a wide range of bird lineages. Here, we developed a novel molecular sexing method based on the comparison of gene copy number variation by quantitative real-time PCR (qPCR) in conserved Z-specific genes (CHRNA6, DDX4, LPAR1, TMEM161B, VPS13A), i.e. genes linked to Z but absent from W chromosomes. We tested the method across three paleognath and 70 neognath species covering the avian phylogeny. In addition, we designed primers for four Z-specific genes (DOCK8, FUT10, PIGG and PSD3) for qPCR-based molecular sexing in three paleognath species. We have demonstrated that the genes DOCK8, FUT10, PIGG and PSD3 can identify sex in paleognath birds and the genes CHRNA6, DDX4, TMEM161B, and VPS13A can reveal sex in neognath birds. The gene LPAR1 can be used to accurately identify sex in both paleognath and neognath species. Along with outlining a novel method of practical importance for molecular sexing in birds, our study also documents in detail the conservation of sex chromosomes across the avian phylogeny.


Asunto(s)
Aves , Variaciones en el Número de Copia de ADN , Cromosomas Sexuales , Análisis para Determinación del Sexo , Animales , Aves/genética , Femenino , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Cromosomas Sexuales/genética
7.
Genes (Basel) ; 12(2)2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503936

RESUMEN

The Asian box turtle genus Cuora currently comprises 13 species with a wide distribution in Southeast Asia, including China and the islands of Indonesia and Philippines. The populations of these species are rapidly declining due to human pressure, including pollution, habitat loss, and harvesting for food consumption. Notably, the IUCN Red List identifies almost all species of the genus Cuora as Endangered (EN) or Critically Endangered (CR). In this study, we explore the karyotypes of 10 Cuora species with conventional (Giemsa staining, C-banding, karyogram reconstruction) and molecular cytogenetic methods (in situ hybridization with probes for rDNA loci and telomeric repeats). Our study reveals a diploid chromosome number of 2n = 52 chromosomes in all studied species, with karyotypes of similar chromosomal morphology. In all examined species, rDNA loci are detected at a single medium-sized chromosome pair and the telomeric repeats are restricted to the expected terminal position across all chromosomes. In contrast to a previous report, sex chromosomes are neither detected in Cuoragalbinifrons nor in any other species. Therefore, we assume that these turtles have either environmental sex determination or genotypic sex determination with poorly differentiated sex chromosomes. The conservation of genome organization could explain the numerous observed cases of interspecific hybridization both within the genus Cuora and across geoemydid turtles.


Asunto(s)
Análisis Citogenético , Tortugas/clasificación , Tortugas/genética , Animales , Bandeo Cromosómico , Código de Barras del ADN Taxonómico , ADN Ribosómico/genética , Evolución Molecular , Hibridación Fluorescente in Situ , Cariotipo , Repeticiones de Microsatélite , Filogenia , Telómero
8.
Genes (Basel) ; 11(6)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630506

RESUMEN

Turtles, a speciose group consisting of more than 300 species, demonstrate karyotypes with diploid chromosome numbers ranging from 2n = 26 to 2n = 68. However, cytogenetic analyses have been conducted only to 1/3rd of the turtle species, often limited to conventional staining methods. In order to expand our knowledge of the karyotype evolution in turtles, we examined the topology of the (TTAGGG)n telomeric repeats and the rDNA loci by fluorescence in situ hybridization (FISH) on the karyotypes of two emydids: the Sicilian pond turtle, Emys trinacris, and the yellow-bellied slider, Trachemys scripta scripta (family Emydidae). Furthermore, AT-rich and GC-rich chromosome regions were detected by DAPI and CMA3 stains, respectively. The cytogenetic analysis revealed that telomeric sequences are restricted to the terminal ends of all chromosomes and the rDNA loci are localized in one pair of microchromosomes in both species. The karyotype of the Sicilian endemic E. trinacris with diploid number 2n = 50, consisting of 13 pairs of macrochromosomes and 12 pairs of microchromosomes, is presented here for first time. Our comparative examination revealed similar cytogenetic features in Emys trinacris and the closely related E. orbicularis, as well as to other previously studied emydid species, demonstrating a low rate of karyotype evolution, as chromosomal rearrangements are rather infrequent in this group of turtles.


Asunto(s)
ADN Ribosómico/genética , Evolución Molecular , Cariotipo , Tortugas/genética , Animales , Citogenética/métodos , Femenino , Hibridación Fluorescente in Situ/métodos , Telómero/genética
9.
Genes (Basel) ; 11(6)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560114

RESUMEN

Telomeres are nucleoprotein complexes protecting chromosome ends in most eukaryotic organisms. In addition to chromosome ends, telomeric-like motifs can be accumulated in centromeric, pericentromeric and intermediate (i.e., between centromeres and telomeres) positions as so-called interstitial telomeric repeats (ITRs). We mapped the distribution of (TTAGGG)n repeats in the karyotypes of 30 species from nine families of turtles using fluorescence in situ hybridization. All examined species showed the expected terminal topology of telomeric motifs at the edges of chromosomes. We detected ITRs in only five species from three families. Combining our and literature data, we inferred seven independent origins of ITRs among turtles. ITRs occurred in turtles in centromeric positions, often in several chromosomal pairs, in a given species. Their distribution does not correspond directly to interchromosomal rearrangements. Our findings support that centromeres and non-recombining parts of sex chromosomes are very dynamic genomic regions, even in turtles, a group generally thought to be slowly evolving. However, in contrast to squamate reptiles (lizards and snakes), where ITRs were found in more than half of the examined species, and birds, the presence of ITRs is generally rare in turtles, which agrees with the expected low rates of chromosomal rearrangements and rather slow karyotype evolution in this group.


Asunto(s)
Centrómero/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telómero/genética , Tortugas/genética , Animales , Femenino , Hibridación Fluorescente in Situ , Cariotipo , Lagartos/genética , Masculino , Cromosomas Sexuales/genética , Serpientes/genética
10.
Genes (Basel) ; 11(5)2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403257

RESUMEN

Lacertid lizards are a widely radiated group of squamate reptiles with long-term stable ZZ/ZW sex chromosomes. Despite their family-wide homology of Z-specific gene content, previous cytogenetic studies revealed significant variability in the size, morphology, and heterochromatin distribution of their W chromosome. However, there is little evidence about the accumulation and distribution of repetitive content on lacertid chromosomes, especially on their W chromosome. In order to expand our knowledge of the evolution of sex chromosome repetitive content, we examined the topology of telomeric and microsatellite motifs that tend to often accumulate on the sex chromosomes of reptiles in the karyotypes of 15 species of lacertids by fluorescence in situ hybridization (FISH). The topology of the above-mentioned motifs was compared to the pattern of heterochromatin distribution, as revealed by C-banding. Our results show that the topologies of the examined motifs on the W chromosome do not seem to follow a strong phylogenetic signal, indicating independent and species-specific accumulations. In addition, the degeneration of the W chromosome can also affect the Z chromosome and potentially also other parts of the genome. Our study provides solid evidence that the repetitive content of the degenerated sex chromosomes is one of the most evolutionary dynamic parts of the genome.


Asunto(s)
Evolución Molecular , Lagartos/genética , Animales , Bandeo Cromosómico , Cromosomas/genética , Femenino , Heterocromatina/genética , Heterocromatina/ultraestructura , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Repeticiones de Microsatélite/genética , Motivos de Nucleótidos , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Cromosomas Sexuales/genética , Especificidad de la Especie , Telómero/genética
11.
Sci Rep ; 10(1): 4276, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152354

RESUMEN

Turtles demonstrate variability in sex determination and, hence, constitute an excellent model for the evolution of sex chromosomes. Notably, the sex determination of the freshwater turtles from the family Chelidae, a species-rich group with wide geographical distribution in the southern hemisphere, is still poorly explored. Here we documented the presence of an XX/XY sex determination system in seven species of the Australasian chelid genera Chelodina, Emydura, and Elseya by conventional (karyogram reconstruction, C-banding) and molecular cytogenetic methods (comparative genome hybridization, in situ hybridization with probes specific for GATA microsatellite motif, the rDNA loci, and the telomeric repeats). The sex chromosomes are microchromosomes in all examined species of the genus Chelodina. In contrast, the sex chromosomes are the 4th largest pair of macrochromosomes in the genera Emydura and Elseya. Their X chromosomes are submetacentric, while their Y chromosomes are metacentric. The chelid Y chromosomes contain a substantial male-specific genomic region with an accumulation of the GATA microsatellite motif, and occasionally, of the rDNA loci and telomeric repeats. Despite morphological differences between sex chromosomes, we conclude that male heterogamety was likely already present in the common ancestor of Chelodina, Emydura and Elseya in the Mesozoic period.


Asunto(s)
Evolución Molecular , Genoma , Cromosomas Sexuales/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Femenino , Cariotipo , Masculino , Repeticiones de Microsatélite , Procesos de Determinación del Sexo , Tortugas
12.
Genes (Basel) ; 10(12)2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31817782

RESUMEN

Chameleons are well-known, highly distinctive lizards characterized by unique morphological and physiological traits, but their karyotypes and sex determination system have remained poorly studied. We studied karyotypes in six species of Madagascan chameleons of the genus Furcifer by classical (conventional stain, C-banding) and molecular (comparative genomic hybridization, in situ hybridization with rDNA, microsatellite, and telomeric sequences) cytogenetic approaches. In contrast to most sauropsid lineages, the chameleons of the genus Furcifer show chromosomal variability even among closely related species, with diploid chromosome numbers varying from 2n = 22 to 2n = 28. We identified female heterogamety with cytogenetically distinct Z and W sex chromosomes in all studied species. Notably, multiple neo-sex chromosomes in the form Z1Z1Z2Z2/Z1Z2W were uncovered in four species of the genus (F. bifidus, F. verrucosus, F. willsii, and previously studied F. pardalis). Phylogenetic distribution and morphology of sex chromosomes suggest that multiple sex chromosomes, which are generally very rare among vertebrates with female heterogamety, possibly evolved several times within the genus Furcifer. Although acrodontan lizards (chameleons and dragon lizards) demonstrate otherwise notable variability in sex determination, it seems that female heterogamety with differentiated sex chromosomes remained stable in the chameleons of the genus Furcifer for about 30 million years.


Asunto(s)
Evolución Molecular , Cariotipo , Lagartos/genética , Filogenia , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Femenino , Lagartos/clasificación , Masculino
13.
Genes (Basel) ; 10(11)2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731798

RESUMEN

Homologous and differentiated ZZ/ZW sex chromosomes (or derived multiple neo-sex chromosomes) were often described in caenophidian snakes, but sex chromosomes were unknown until recently in non-caenophidian snakes. Previous studies revealed that two species of boas (Boa imperator, B. constrictor) and one species of python (Python bivittatus) independently evolved XX/XY sex chromosomes. In addition, heteromorphic ZZ/ZW sex chromosomes were recently revealed in the Madagascar boa (Acrantophis sp. cf. dumerili) and putatively also in the blind snake Myriopholis macrorhyncha. Since the evolution of sex chromosomes in non-caenophidian snakes seems to be more complex than previously thought, we examined ten species of pythons and boas representing the families Boidae, Calabariidae, Candoiidae, Charinidae, Pythonidae, and Sanziniidae by conventional and molecular cytogenetic methods, aiming to reveal their sex chromosomes. Our results show that all examined species do not possess sex-specific differences in their genomes detectable by the applied cytogenetic methods, indicating the presence of poorly differentiated sex chromosomes or even the absence of sex chromosomes. Interestingly, fluorescence in situ hybridization with telomeric repeats revealed extensive distribution of interstitial telomeric repeats in eight species, which are likely a consequence of intra-chromosomal rearrangements.


Asunto(s)
Boidae/genética , Evolución Molecular , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Animales , Femenino , Reordenamiento Génico , Genoma/genética , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Telómero/genética
14.
Cytogenet Genome Res ; 158(3): 145-151, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31234172

RESUMEN

Classical cytogenetics and mapping of 18S-28S rDNA and (TTAGGG)n sequences by fluorescence in situ hybridization (FISH) was performed on Graphiurus platyops (GPL) and Graphiurus ocularis (GOC) metaphases with the aim to characterize the genomes. In both species, inverted DAPI karyotypes showed the same diploid number, 2n = 46, and hybridization of the (TTAGGG)n probe revealed interstitial telomeric sequences (ITSs) at the centromeres of almost all bi-armed chromosomes. FISH with the rDNA probe localized nucleolus organizer regions (NORs), at the terminal ends of the p arms of the subtelocentric pairs 16 and 17 in both species and detected additional signals on GPL8 and GOC18, 19, and 22. The species have similar karyotypes, but their chromosome pairs 18-22 differ in morphology; these are acrocentric in G. platyops, as also confirmed by C-banding, and subtelocentric in G. ocularis. These differences in pairs 18-22 were also highlighted by hybridization of the telomeric probe (TTAGGG)n, which showed the small p arms in G. ocularis enriched with ITSs. FISH of rDNA probes detected multiple NOR loci in G. ocularis, underlining the intense evolutionary dynamics related to these genes. Although the Graphiurus species analyzed have similar karyotypes, the results on the repetitive sequences indicate a complex pattern of genomic reorganization and evolution occurring in these phylogenetically close species.


Asunto(s)
Cromosomas de los Mamíferos/genética , ADN Ribosómico/genética , Myoxidae/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Animales , Secuencia de Bases , Bandeo Cromosómico , Hibridación Fluorescente in Situ , Cariotipo , Masculino , Sudáfrica
15.
PeerJ ; 7: e6241, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30755825

RESUMEN

For a long time, turtles of the family Geoemydidae have been considered exceptional because representatives of this family were thought to possess a wide variety of sex determination systems. In the present study, we cytogenetically studied Geoemyda spengleri and G. japonica and re-examined the putative presence of sex chromosomes in Pangshura smithii. Karyotypes were examined by assessing the occurrence of constitutive heterochromatin, by comparative genome hybridization and in situ hybridization with repetitive motifs, which are often accumulated on differentiated sex chromosomes in reptiles. We found similar karyotypes, similar distributions of constitutive heterochromatin and a similar topology of tested repetitive motifs for all three species. We did not detect differentiated sex chromosomes in any of the species. For P. smithii, a ZZ/ZW sex determination system, with differentiated sex chromosomes, was described more than 40 years ago, but this finding has never been re-examined and was cited in all reviews of sex determination in reptiles. Here, we show that the identification of sex chromosomes in the original report was based on the erroneous pairing of chromosomes in the karyogram, causing over decades an error cascade regarding the inferences derived from the putative existence of female heterogamety in geoemydid turtles.

16.
Cytogenet Genome Res ; 157(1-2): 53-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30641524

RESUMEN

An experimental approach using monoclonal anti-5-methylcytosine antibodies and indirect immunofluorescence was elaborated for detecting 5-methylcytosine-rich chromosome regions in reptilian chromosomes. This technique was applied to conventionally prepared mitotic metaphases of 2 turtle species and 12 squamate species from 8 families. The hypermethylation patterns were compared with C-banding patterns obtained by conventional banding techniques. The hypermethylated DNA sequences are species-specific and are located in constitutive heterochromatin. They are highly reproducible and often found in centromeric, pericentromeric, and interstitial positions of the chromosomes. Heterochromatic regions in differentiated sex chromosomes are particularly hypermethylated.


Asunto(s)
5-Metilcitosina/metabolismo , Cromosomas/genética , Heterocromatina/genética , Reptiles/genética , 5-Metilcitosina/inmunología , Animales , Centrómero/genética , Centrómero/metabolismo , Cromosomas/metabolismo , Metilación de ADN , Heterocromatina/inmunología , Heterocromatina/metabolismo , Cariotipo , Cariotipificación , Masculino , Reptiles/clasificación , Reptiles/metabolismo , Cromosomas Sexuales/genética , Cromosomas Sexuales/metabolismo , Especificidad de la Especie
17.
Comp Cytogenet ; 12(1): 27-40, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29416829

RESUMEN

We explored the topology of 18S and 28S rDNA units by fluorescence in situ hybridization (FISH) in the karyotypes of thirteen species representatives from major groups of Primates and Tupaia minor (Günther, 1876) (Scandentia), in order to expand our knowledge of Primate genome reshuffling and to identify the possible dispersion mechanisms of rDNA sequences. We documented that rDNA probe signals were identified on one to six pairs of chromosomes, both acrocentric and metacentric ones. In addition, we examined the potential homology of chromosomes bearing rDNA genes across different species and in a wide phylogenetic perspective, based on the DAPI-inverted pattern and their synteny to human. Our analysis revealed an extensive variability in the topology of the rDNA signals across studied species. In some cases, closely related species show signals on homologous chromosomes, thus representing synapomorphies, while in other cases, signal was detected on distinct chromosomes, leading to species specific patterns. These results led us to support the hypothesis that different mechanisms are responsible for the distribution of the ribosomal DNA cluster in Primates.

18.
Genes (Basel) ; 9(1)2017 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-29283388

RESUMEN

The caenophidian (assigned also as "advanced") snakes are traditionally viewed as a group of reptiles with a limited karyotypic variation and stable ZZ/ZW sex chromosomes. The W chromosomes of the caenophidian snakes are heterochromatic, and pioneering studies demonstrated that they are rich in repetitive elements. However, a comparative study of the evolutionary dynamics of the repetitive content of the W chromosome across the whole lineage is missing. Using molecular-cytogenetic techniques, we explored the distribution of four repetitive motifs (microsatellites GATA, GACA, AG and telomeric-like sequences), which are frequently accumulated in differentiated sex chromosomes in vertebrates, in the genomes of 13 species of the caenophidian snakes covering a wide phylogenetic spectrum of the lineage. The results demonstrate a striking variability in the morphology and the repetitive content of the W chromosomes even between closely-related species, which is in contrast to the homology and long-term stability of the gene content of the caenophidian Z chromosome. We uncovered that the tested microsatellite motifs are accumulated on the degenerated, heterochromatic W chromosomes in all tested species of the caenophidian snakes with the exception of the Javan file snake representing a basal clade. On the other hand, the presence of the accumulation of the telomeric-like sequences on the caenophidian W chromosome is evolutionary much less stable. Moreover, we demonstrated that large accumulations of telomeric-like motifs on the W chromosome contribute to sexual differences in the number of copies of the telomeric and telomeric-like repeats estimated by quantitative PCR, which might be confusing and incorrectly interpreted as sexual differences in telomere length.

19.
Cytogenet Genome Res ; 151(3): 141-150, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28423373

RESUMEN

It has been hypothesized that interstitial telomeric sequences (ITSs), i.e., repeated telomeric DNA sequences found at intrachromosomal sites in many vertebrates, could be correlated to chromosomal rearrangements and plasticity. To test this hypothesis, we hybridized a telomeric PNA probe through FISH on representative species of 2 primate infraorders, Strepsirrhini (Lemur catta, Otolemur garnettii, Nycticebus coucang) and Catarrhini (Erythrocebus patas, Cercopithecus petaurista, Chlorocebus aethiops, Colobus guereza), as well as on 1 species of the order Scandentia, Tupaia minor, used as an outgroup for primates in phylogenetic reconstructions. In almost all primate species analyzed, we found a telomeric pattern only. In Tupaia, the hybridization revealed many bright ITSs on at least 11 chromosome pairs, both biarmed and acrocentric. These ITS signals in Tupaia correspond to fusion points of ancestral human syntenic associations, but are also present in other chromosomes showing synteny to only a single human chromosome. This distribution pattern was compared to that of the heterochromatin regions detected through sequential C-banding performed after FISH. Our results in the analyzed species, compared with literature data on ITSs in primates, allowed us to discuss different mechanisms responsible for the origin and distribution of ITSs, supporting the correlation between rearrangements and ITSs.


Asunto(s)
Primates/genética , Telómero/genética , Tupaiidae/genética , Animales , Heterocromatina , Ácidos Nucleicos de Péptidos/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA