Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Acta Cytol ; 66(1): 46-54, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34662874

RESUMEN

INTRODUCTION: Dataset creation is one of the first tasks required for training AI algorithms but is underestimated in pathology. High-quality data are essential for training algorithms and data should be labelled accurately and include sufficient morphological diversity. The dynamics and challenges of labelling a urine cytology dataset using The Paris System (TPS) criteria are presented. METHODS: 2,454 images were labelled by pathologist consensus via video conferencing over a 14-day period. During the labelling sessions, the dynamics of the labelling process were recorded. Quality assurance images were randomly selected from images labelled in previous sessions within this study and randomly distributed throughout new labelling sessions. To assess the effect of time on the labelling process, the labelled set of images was split into 2 groups according to the median relative label time and the time taken to label images and intersession agreement were assessed. RESULTS: Labelling sessions ranged from 24 m 11 s to 41 m 06 s in length, with a median of 33 m 47 s. The majority of the 2,454 images were labelled as benign urothelial cells, with atypical and malignant urothelial cells more sparsely represented. The time taken to label individual images ranged from 1 s to 42 s with a median of 2.9 s. Labelling times differed significantly among categories, with the median label time for the atypical urothelial category being 7.2 s, followed by the malignant urothelial category at 3.8 s and the benign urothelial category at 2.9 s. The overall intersession agreement for quality assurance images was substantial. The level of agreement differed among classes of urothelial cells - benign and malignant urothelial cell classes showed almost perfect agreement and the atypical urothelial cell class showed moderate agreement. Image labelling times seemed to speed up, and there was no evidence of worsening of intersession agreement with session time. DISCUSSION/CONCLUSION: Important aspects of pathology dataset creation are presented, illustrating the significant resources required for labelling a large dataset. We present evidence that the time taken to categorise urine cytology images varies by diagnosis/class. The known challenges relating to the reproducibility of the AUC (atypical) category in TPS when compared to the NHGUC (benign) or HGUC (malignant) categories is also confirmed.


Asunto(s)
Neoplasias Urológicas , Citodiagnóstico/métodos , Células Epiteliales/patología , Humanos , Reproducibilidad de los Resultados , Orina , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/patología , Urotelio/patología
2.
Acta Cytol ; 65(4): 301-309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33137806

RESUMEN

BACKGROUND: The incorporation of digital pathology into routine pathology practice is becoming more widespread. Definite advantages exist with respect to the implementation of artificial intelligence (AI) and deep learning in pathology, including cytopathology. However, there are also unique challenges in this regard. SUMMARY: This review discusses cytology-specific challenges, including the need to implement digital cytology prior to AI; the large file sizes and increased acquisition times for whole slide images in cytology; the routine use of multiple stains, such as Papanicolaou and Romanowsky stains; the lack of high-quality annotated datasets on which to train algorithms; and the considerable computer resources required, in terms of both computer infrastructure and skilled personnel, for computing and storage of data. Global concerns regarding AI that are certainly applicable to cytology include the need for model validation and continued quality assurance, ethical issues such as the use of patient data in developing algorithms, the need to develop regulatory frameworks regarding what type of data can be utilized and ensuring cybersecurity during data collection and storage, and algorithm development. Key Messages: While AI will likely play a role in cytology practice in the future, applying this technology to cytology poses a unique set of challenges. A broad understanding of digital pathology and algorithm development is desirable to guide the development of algorithms, as well as the need to be cognizant of potential pitfalls to avoid when incorporating the technology in practice.


Asunto(s)
Citodiagnóstico , Aprendizaje Profundo , Diagnóstico por Computador , Interpretación de Imagen Asistida por Computador , Patología , Automatización de Laboratorios , Seguridad Computacional , Humanos , Valor Predictivo de las Pruebas , Indicadores de Calidad de la Atención de Salud , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA