Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
J Orthop Case Rep ; 14(4): 67-72, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38681919

RESUMEN

Introduction: A patient presented for recalcitrant right hip pain secondary to femoroacetabular impingement (FAI) after blunt motor vehicle trauma and following the development of a 12 cm heterotopic ossification (HO). FAI is an increasingly recognized diagnosis where the hip joint is exposed to repeated femoral microtrauma from high-level physical activity or trauma, often causing labral ossification, and perhaps underlying a similar biological mechanism to HO. Case Report: In this case report, we have an otherwise healthy 49-year-old male who was involved in a high-speed motor vehicle collision who was diagnosed with right hip FAI secondary to HO (Brooker's Class IV) and indicated for surgical excision of the HO anterior to the right proximal femur. The care team and patient initially trialed non-operative conservative treatment with non-steroidal anti-inflammatories drugs (NSAIDs) and hypothesized therapeutic success using a non-surgical approach. Surgical resection was pursued with the patient after a failure of conservative measures. The patient reported a zero out of ten on a ten-point numerical rating scale for pain, he also stated improved quality of life, satisfaction with the procedure, and subsequent rehabilitation at 1-month post-operative follow-up. Conclusion: HO with near complete ankylosis of the hip joint may be causative of FAI when untreated. Although this case demonstrates a rarely studied traumatic etiology of impingement secondary to HO, initial standard conservative anti-inflammatory treatment can still be pursued. By analyzing the periarticular impact of HO secondary to non-surgical trauma, we can utilize and make inferential correlations from the literature, studying HO and impingement in the setting of prior hip surgery to guide treatment and prognosis in those presenting with FAI symptoms secondary to blunt force trauma.

2.
Methods Mol Biol ; 2797: 1-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570448

RESUMEN

RAS research has entered the world of translational and clinical science. Progress has been based on our appreciation of the role of RAS mutations in different types of cancer and the effects of these mutations on the biochemical, structural, and biophysical properties of the RAS proteins themselves, particularly KRAS, on which most attention has been focused. This knowledge base, while still growing, has enabled creative chemical approaches to targeting KRAS directly. Our understanding of RAS signaling pathways in normal and cancer cells plays an important role for developing RAS inhibitors but also continues to reveal new approaches to targeting RAS through disruption of signaling complexes and downstream pathways.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Neoplasias/metabolismo , Transducción de Señal , Antineoplásicos/farmacología
3.
Commun Biol ; 7(1): 260, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431713

RESUMEN

RAF kinases are integral to the RAS-MAPK signaling pathway, and proper RAF1 folding relies on its interaction with the chaperone HSP90 and the cochaperone CDC37. Understanding the intricate molecular interactions governing RAF1 folding is crucial for comprehending this process. Here, we present a cryo-EM structure of the closed-state RAF1-HSP90-CDC37 complex, where the C-lobe of the RAF1 kinase domain binds to one side of the HSP90 dimer, and an unfolded N-lobe segment of the RAF1 kinase domain threads through the center of the HSP90 dimer. CDC37 binds to the kinase C-lobe, mimicking the N-lobe with its HxNI motif. We also describe structures of HSP90 dimers without RAF1 and CDC37, displaying only N-terminal and middle domains, which we term the semi-open state. Employing 1 µs atomistic simulations, energetic decomposition, and comparative structural analysis, we elucidate the dynamics and interactions within these complexes. Our quantitative analysis reveals that CDC37 bridges the HSP90-RAF1 interaction, RAF1 binds HSP90 asymmetrically, and that HSP90 structural elements engage RAF1's unfolded region. Additionally, N- and C-terminal interactions stabilize HSP90 dimers, and molecular interactions in HSP90 dimers rearrange between the closed and semi-open states. Our findings provide valuable insight into the contributions of HSP90 and CDC37 in mediating client folding.


Asunto(s)
Proteínas de Ciclo Celular , Chaperoninas , Humanos , Proteínas de Ciclo Celular/metabolismo , Unión Proteica , Chaperoninas/química , Chaperonas Moleculares/metabolismo , Proteínas HSP90 de Choque Térmico
4.
Anal Chem ; 96(13): 5223-5231, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498381

RESUMEN

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Asunto(s)
Proteómica , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Sitios de Unión
5.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354232

RESUMEN

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Conformación Molecular , Isoformas de Proteínas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216572

RESUMEN

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Asunto(s)
Neurilemoma , Neurofibromatosis , Neurofibromatosis 1 , Neurofibromatosis 2 , Animales , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neurilemoma/genética , Neurilemoma/patología , Neurofibromatosis/metabolismo , Neurofibromatosis/patología , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromatosis 2/genética , Neurofibromatosis 2/patología , Células de Schwann/metabolismo , Resistencia a Antineoplásicos/genética
7.
J Biol Chem ; 300(2): 105650, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237681

RESUMEN

Individual oncogenic KRAS mutants confer distinct differences in biochemical properties and signaling for reasons that are not well understood. KRAS activity is closely coupled to protein dynamics and is regulated through two interconverting conformations: state 1 (inactive, effector binding deficient) and state 2 (active, effector binding enabled). Here, we use 31P NMR to delineate the differences in state 1 and state 2 populations present in WT and common KRAS oncogenic mutants (G12C, G12D, G12V, G13D, and Q61L) bound to its natural substrate GTP or a commonly used nonhydrolyzable analog GppNHp (guanosine-5'-[(ß,γ)-imido] triphosphate). Our results show that GppNHp-bound proteins exhibit significant state 1 population, whereas GTP-bound KRAS is primarily (90% or more) in state 2 conformation. This observation suggests that the predominance of state 1 shown here and in other studies is related to GppNHp and is most likely nonexistent in cells. We characterize the impact of this differential conformational equilibrium of oncogenic KRAS on RAF1 kinase effector RAS-binding domain and intrinsic hydrolysis. Through a KRAS G12C drug discovery, we have identified a novel small-molecule inhibitor, BBO-8956, which is effective against both GDP- and GTP-bound KRAS G12C. We show that binding of this inhibitor significantly perturbs state 1-state 2 equilibrium and induces an inactive state 1 conformation in GTP-bound KRAS G12C. In the presence of BBO-8956, RAF1-RAS-binding domain is unable to induce a signaling competent state 2 conformation within the ternary complex, demonstrating the mechanism of action for this novel and active-conformation inhibitor.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Guanosina Trifosfato/metabolismo , Espectroscopía de Resonancia Magnética , Transducción de Señal , Mutación
8.
Prog Transplant ; 33(4): 363-371, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37968881

RESUMEN

Virtually all clinicians agree that living donor renal transplantation is the optimal treatment for permanent loss of kidney function. Yet, living donor kidney transplantation has not grown in the United States for more than 2 decades. A virtual symposium gathered experts to examine this shortcoming and to stimulate and clarify issues salient to improving living donation. The ethical principles of rewarding kidney donors and the limits of altruism as the exclusive compelling stimulus for donation were emphasized. Concepts that donor incentives could save up to 40 000 lives annually and considerable taxpayer dollars were examined, and survey data confirmed voter support for donor compensation. Objections to rewarding donors were also presented. Living donor kidney exchanges and limited numbers of deceased donor kidneys were reviewed. Discussants found consensus that attempts to increase living donation should include removing artificial barriers in donor evaluation, expansion of living donor chains, affirming the safety of live kidney donation, and assurance that donors incur no expense. If the current legal and practice standards persist, living kidney donation will fail to achieve its true potential to save lives.


Asunto(s)
Trasplante de Riñón , Obtención de Tejidos y Órganos , Humanos , Estados Unidos , Donadores Vivos , Riñón , Encuestas y Cuestionarios
9.
Bioscience ; 73(7): 479-493, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37841229

RESUMEN

Biodiversity collections are experiencing a renaissance fueled by the intersection of informatics, emerging technologies, and the extended use and interpretation of specimens and archived databases. In this article, we explore the potential for transformative research in ecology integrating biodiversity collections, stable isotope analysis (SIA), and environmental informatics. Like genomic DNA, SIA provides a common currency interpreted in the context of biogeochemical principles. Integration of SIA data across collections allows for evaluation of long-term ecological change at local to continental scales. Challenges including the analysis of sparse samples, a lack of information about baseline isotopic composition, and the effects of preservation remain, but none of these challenges is insurmountable. The proposed research framework interfaces with existing databases and observatories to provide benchmarks for retrospective studies and ecological forecasting. Collections and SIA add historical context to fundamental questions in freshwater ecological research, reference points for ecosystem monitoring, and a means of quantitative assessment for ecosystem restoration.

10.
Sci Adv ; 9(28): eadf4766, 2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450595

RESUMEN

RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.


Asunto(s)
Neoplasias Pulmonares , Síndrome de Noonan , Animales , Ratones , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Cardiomegalia/genética , Transducción de Señal
11.
Commun Biol ; 6(1): 594, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268708

RESUMEN

Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sitios de Unión , Proteínas ras/metabolismo , Conformación Proteica , Espectroscopía de Resonancia Magnética
12.
J Invest Dermatol ; 143(8): 1358-1368, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37245145

RESUMEN

Cutaneous neurofibromas (cNFs) are the most common tumor in people with the rasopathy neurofibromatosis type 1. They number in hundreds or even thousands throughout the body, and currently, there are no effective interventions to prevent or treat these skin tumors. To facilitate the identification of novel and effective therapies, essential studies including a more refined understanding of cNF biology and the role of RAS signaling and downstream effector pathways responsible for cNF initiation, growth, and maintenance are needed. This review highlights the current state of knowledge of RAS signaling in cNF pathogenesis and therapeutic development for cNF treatment.


Asunto(s)
Neurofibroma , Neurofibromatosis 1 , Neoplasias Cutáneas , Humanos , Neurofibroma/metabolismo , Neurofibroma/patología , Neurofibromatosis 1/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Transducción de Señal
13.
J Biol Chem ; 299(6): 104789, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149146

RESUMEN

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos , Proteínas Represoras , Proteínas Quinasas S6 Ribosómicas 90-kDa , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/genética , Humanos , Línea Celular , Dominios Proteicos , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Técnicas de Silenciamiento del Gen , Transporte de Proteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(5): e2208960120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689660

RESUMEN

The majority of pathogenic mutations in the neurofibromatosis type I (NF1) gene reduce total neurofibromin protein expression through premature truncation or microdeletion, but it is less well understood how loss-of-function missense variants drive NF1 disease. We have found that patient variants in codons 844 to 848, which correlate with a severe phenotype, cause protein instability and exert an additional dominant-negative action whereby wild-type neurofibromin also becomes destabilized through protein dimerization. We have used our neurofibromin cryogenic electron microscopy structure to predict and validate other patient variants that act through a similar mechanism. This provides a foundation for understanding genotype-phenotype correlations and has important implications for patient counseling, disease management, and therapeutics.


Asunto(s)
Neurofibromatosis 1 , Neurofibromina 1 , Humanos , Neurofibromina 1/metabolismo , Neurofibromatosis 1/genética , Dimerización , Mutación , Mutación Missense
15.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36175670

RESUMEN

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Asunto(s)
Síndrome de Noonan , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosfoserina/metabolismo , Proteína Fosfatasa 1 , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismo , Proteínas ras/metabolismo
16.
Metabolites ; 12(9)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36144235

RESUMEN

Cancer cells utilize multiple nutrient scavenging mechanisms to support growth and survival in nutrient-poor, hypoxic tumor microenvironments. Among these mechanisms, macropinocytosis has emerged as an important pathway of extracellular nutrient acquisition in cancer cells, particularly in tumors with activated RAS signaling, such as pancreatic cancer. However, the absence of a clinically available inhibitor, as well as the gap of knowledge in macropinocytosis regulation, remain a hurdle for its use for cancer therapy. Here, we use the Informer set library to identify novel regulators of macropinocytosis-dependent growth in pancreatic cancer cells. Understanding how these regulators function will allow us to provide novel opportunities for therapeutic intervention.

17.
Cancer Discov ; 12(10): 2434-2453, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-35904492

RESUMEN

Recently, screens for mediators of resistance to FLT3 and ABL kinase inhibitors in leukemia resulted in the discovery of LZTR1 as an adapter of a Cullin-3 RING E3 ubiquitin ligase complex responsible for the degradation of RAS GTPases. In parallel, dysregulated LZTR1 expression via aberrant splicing and mutations was identified in clonal hematopoietic conditions. Here we identify that loss of LZTR1, or leukemia-associated mutants in the LZTR1 substrate and RAS GTPase RIT1 that escape degradation, drives hematopoietic stem cell (HSC) expansion and leukemia in vivo. Although RIT1 stabilization was sufficient to drive hematopoietic transformation, transformation mediated by LZTR1 loss required MRAS. Proteolysis targeting chimeras (PROTAC) against RAS or reduction of GTP-loaded RAS overcomes LZTR1 loss-mediated resistance to FLT3 inhibitors. These data reveal proteolysis of noncanonical RAS proteins as novel regulators of HSC self-renewal, define the function of RIT1 and LZTR1 mutations in leukemia, and identify means to overcome drug resistance due to LZTR1 downregulation. SIGNIFICANCE: Here we identify that impairing proteolysis of the noncanonical RAS GTPases RIT1 and MRAS via LZTR1 downregulation or leukemia-associated mutations stabilizing RIT1 enhances MAP kinase activation and drives leukemogenesis. Reducing the abundance of GTP-bound KRAS and NRAS overcomes the resistance to FLT3 kinase inhibitors associated with LZTR1 downregulation in leukemia. This article is highlighted in the In This Issue feature, p. 2221.


Asunto(s)
Leucemia , Proteínas ras , Proteínas Cullin/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Leucemia/genética , Inhibidores de Proteínas Quinasas/farmacología , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción/genética , Proteínas ras/genética
18.
Nature ; 609(7926): 408-415, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35831509

RESUMEN

Receptor tyrosine kinase (RTK)-RAS signalling through the downstream mitogen-activated protein kinase (MAPK) cascade regulates cell proliferation and survival. The SHOC2-MRAS-PP1C holophosphatase complex functions as a key regulator of RTK-RAS signalling by removing an inhibitory phosphorylation event on the RAF family of proteins to potentiate MAPK signalling1. SHOC2 forms a ternary complex with MRAS and PP1C, and human germline gain-of-function mutations in this complex result in congenital RASopathy syndromes2-5. However, the structure and assembly of this complex are poorly understood. Here we use cryo-electron microscopy to resolve the structure of the SHOC2-MRAS-PP1C complex. We define the biophysical principles of holoenzyme interactions, elucidate the assembly order of the complex, and systematically interrogate the functional consequence of nearly all of the possible missense variants of SHOC2 through deep mutational scanning. We show that SHOC2 binds PP1C and MRAS through the concave surface of the leucine-rich repeat region and further engages PP1C through the N-terminal disordered region that contains a cryptic RVXF motif. Complex formation is initially mediated by interactions between SHOC2 and PP1C and is stabilized by the binding of GTP-loaded MRAS. These observations explain how mutant versions of SHOC2 in RASopathies and cancer stabilize the interactions of complex members to enhance holophosphatase activity. Together, this integrative structure-function model comprehensively defines key binding interactions within the SHOC2-MRAS-PP1C holophosphatase complex and will inform therapeutic development .


Asunto(s)
Microscopía por Crioelectrón , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos , Proteína Fosfatasa 1 , Proteínas ras , Secuencias de Aminoácidos , Sitios de Unión , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Mutación Missense , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/ultraestructura , Estabilidad Proteica , Quinasas raf , Proteínas ras/química , Proteínas ras/metabolismo , Proteínas ras/ultraestructura
19.
Value Health ; 25(12): 2028-2033, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690519

RESUMEN

OBJECTIVES: The aim of this study was to show how the US government could save approximately 47 000 patients with chronic kidney failure each year from suffering on dialysis and premature death by compensating living kidney donors enough to completely end the kidney shortage. METHODS: Supply and demand analysis was used to estimate the number of donated kidneys needed to end the kidney shortage and the level of compensation required to encourage this number of donations. These results were then input into a detailed cost-benefit analysis to estimate the economic value of kidney transplantation to (1) the average kidney recipient and their caregiver, (2) taxpayers, and (3) society in general. RESULTS: We estimate half of patients diagnosed with kidney failure each year-approximately 62 000 patients-could be saved from suffering on dialysis and premature death if they could receive an average of 1½ kidney transplants. However, currently there are only enough donated kidneys to save approximately 15 000 patients. To encourage sufficient donations to save the other 47 000 patients, the government would have to compensate living kidney donors approximately $77 000 (±50%) per donor. The value of transplantation to an average kidney recipient (and caregiver) would be approximately $1.5 million, and the savings from the recipient not needing expensive dialysis treatments would be approximately $1.2 million. CONCLUSIONS: This analysis reveals the huge benefit that compensating living kidney donors would provide to patients with kidney failure and their caregivers and, conversely, the huge cost that is being imposed on these patients and their families by the current legal prohibition against such compensation.


Asunto(s)
Fallo Renal Crónico , Trasplante de Riñón , Humanos , Estados Unidos , Análisis Costo-Beneficio , Donadores Vivos , Fallo Renal Crónico/cirugía , Diálisis Renal
20.
Am Soc Clin Oncol Educ Book ; 42: 1-13, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35561303

RESUMEN

Despite the discovery of RAS oncogenes in human tumor DNA 40 years ago, the development of effective targeted therapies directed against RAS has lagged behind those more successful advancements in the field of therapeutic tyrosine kinase inhibitors targeting other oncogenes such as EGFR, ALK, and ROS1. The discoveries that (1) malignant RAS oncogenes differ from their wild-type counterparts by only a single amino acid change and (2) covalent inhibition of the cysteine residue at codon 12 of KRASG12C in its inactive GDP-bound state resulted in effective inhibition of oncogenic RAS signaling and have catalyzed a dramatic shift in mindset toward KRAS-driven cancers. Although the development of allele-selective KRASG12C inhibitors has changed a treatment paradigm, the clinical activity of these agents is more modest than tyrosine kinase inhibitors targeting other oncogene-driven cancers. Heterogeneous resistance mechanisms generally result in the restoration of RAS/mitogen-activated protein kinase pathway signaling. Many approaches are being evaluated to overcome this resistance, with many combinatorial clinical trials ongoing. Furthermore, because KRASG12D and KRASG12V are more prevalent than KRASG12C, there remains an unmet need for additional therapeutic strategies for these patients. Thus, our current translational standing could be described as "the end of the beginning," with additional discovery and research innovation needed to address the enormous disease burden imposed by RAS-mutant cancers. Here, we describe the development of KRASG12C inhibitors, the challenges of resistance to these inhibitors, strategies to mitigate that resistance, and new approaches being taken to address other RAS-mutant cancers.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Genes ras , Humanos , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA