Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Eur J Pharm Sci ; 203: 106922, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39368784

RESUMEN

The gut microbiome can metabolise hundreds of drugs, potentially affecting their bioavailability and pharmacological effect. As most gut bacteria reside in the colon, drugs that reach the colon in significant proportions may be most impacted by microbiome metabolism. In this study the anti-colorectal cancer drug trifluridine was used as a model drug for characterising metabolism by the colonic microbiota, identifying correlations between bacterial species and individuals' rates of microbiome drug inactivation, and developing strategies to prevent drug inactivation following targeted colonic delivery. High performance liquid chromatography and ultra-high performance liquid chromatography coupled with high resolution tandem mass spectrometry demonstrated trifluridine's variable and multi-route metabolism by the faecal microbiota sourced from six healthy humans. Here, four drug metabolites were linked to the microbiome for the first time. Metagenomic sequencing of the human microbiota samples revealed their composition, which facilitated prediction of individual donors' microbial trifluridine inactivation. Notably, the abundance of Clostridium perfringens strongly correlated with the extent of trifluridine inactivation by microbiota samples after 2 hours (R2 = 0.8966). Finally, several strategies were trialled for the prevention of microbial trifluridine metabolism. It was shown that uridine, a safe and well-tolerated molecule, significantly reduced the microbiota's metabolism of trifluridine by acting as a competitive enzyme inhibitor. Further, uridine was found to provide prebiotic effects. The findings in this study greatly expand knowledge on trifluridine's interactions with the gut microbiome and provide valuable insights for investigating the microbiome metabolism of other drugs. The results demonstrate how protection strategies could enhance the colonic stability of microbiome-sensitive drugs.

2.
J Control Release ; 374: 103-111, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127449

RESUMEN

Colonic drug delivery offers numerous pharmaceutical opportunities, including direct access to local therapeutic targets and drug bioavailability benefits arising from the colonic epithelium's reduced abundance of cytochrome P450 enzymes and particular efflux transporters. Current workflows for developing colonic drug delivery systems involve time-consuming, low throughput in vitro and in vivo screening methods, which hinder the identification of suitable enabling materials. Polysaccharides are useful materials for colonic targeting, as they can be utilised as dosage form coatings that are selectively digested by the colonic microbiota. However, polysaccharides are a heterogeneous family of molecules with varying suitability for this purpose. To address the need for high-throughput material selection tools for colonic drug delivery, we leveraged machine learning (ML) and publicly accessible experimental data to predict the release of the drug 5-aminosalicylic acid from polysaccharide-based coatings in simulated human, rat, and dog colonic environments. For the first time, Raman spectra alone were used to characterise polysaccharides for input as ML features. Models were validated on 8 unseen drug release profiles from new polysaccharide coatings, demonstrating the generalisability and reliability of the method. Further, model analysis facilitated an understanding of the chemical features that influence a polysaccharide's suitability for colonic drug delivery. This work represents a major step in employing spectral data for forecasting drug release from pharmaceutical formulations and marks a significant advancement in the field of colonic drug delivery. It offers a powerful tool for the efficient, sustainable, and successful development and pre-ranking of colon-targeted formulation coatings, paving the way for future more effective and targeted drug delivery strategies.


Asunto(s)
Colon , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Aprendizaje Automático , Mesalamina , Polisacáridos , Espectrometría Raman , Colon/metabolismo , Animales , Humanos , Espectrometría Raman/métodos , Polisacáridos/química , Mesalamina/administración & dosificación , Mesalamina/farmacocinética , Mesalamina/química , Perros , Ratas
3.
Eur J Pharm Sci ; 200: 106845, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971433

RESUMEN

The gut microbiota is a complex ecosystem, home to hundreds of bacterial species and a vast repository of enzymes capable of metabolising a wide range of pharmaceuticals. Several drugs have been shown to affect negatively the composition and function of the gut microbial ecosystem. Janus Kinase (JAK) inhibitors and Sphingosine-1-phosphate (S1P) receptor modulators are drugs recently approved for inflammatory bowel disease through an immediate release formulation and would potentially benefit from colonic targeted delivery to enhance the local drug concentration at the diseased site. However, their impact on the human gut microbiota and susceptibility to bacterial metabolism remain unexplored. With the use of calorimetric, optical density measurements, and metagenomics next-generation sequencing, we show that JAK inhibitors (tofacitinib citrate, baricitinib, filgotinib) have a minor impact on the composition of the human gut microbiota, while ozanimod exerts a significant antimicrobial effect, leading to a prevalence of the Enterococcus genus and a markedly different metabolic landscape when compared to the untreated microbiota. Moreover, ozanimod, unlike the JAK inhibitors, is the only drug subject to enzymatic degradation by the human gut microbiota sourced from six healthy donors. Overall, given the crucial role of the gut microbiome in health, screening assays to investigate the interaction of drugs with the microbiota should be encouraged for the pharmaceutical industry as a standard in the drug discovery and development process.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Inhibidores de las Cinasas Janus , Moduladores de los Receptores de fosfatos y esfingosina 1 , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Inhibidores de las Cinasas Janus/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/metabolismo , Pirazoles/farmacología , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Sulfonamidas/farmacología , Sulfonamidas/administración & dosificación , Purinas , Azetidinas/farmacología , Azetidinas/administración & dosificación , Compuestos de Bencilo/farmacología , Compuestos de Bencilo/administración & dosificación , Piperidinas/farmacología , Piperidinas/administración & dosificación , Pirimidinas/farmacología , Pirimidinas/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Oxadiazoles/farmacología , Oxadiazoles/administración & dosificación , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Pirroles/farmacología , Pirroles/administración & dosificación , Indanos/farmacología , Indanos/administración & dosificación , Piridinas , Triazoles
4.
J Control Release ; 369: 630-641, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599548

RESUMEN

Successful treatment of ulcerative colitis (UC) is highly dependent on several parameters, including dosing regimen and the ability to deliver drugs to the disease site. In this study two strategies for delivering mesalazine (5-aminosalicylic acid, 5-ASA) to the colon were compared in an advanced in vitro model of the human gastrointestinal (GI) tract, the SHIME® system. Herein, a prodrug strategy employing bacteria-mediated drug release (sulfasalazine, Azulfidine®) was evaluated alongside a formulation strategy that utilised pH and bacteria-mediated release (5-ASA, Octasa® 1600 mg). SHIME® experiments were performed simulating both the GI physiology and colonic microbiota under healthy and inflammatory bowel disease (IBD) conditions, to study the impact of the disease state and ileal pH variability on colonic 5-ASA delivery. In addition, the effects of the products on the colonic microbiome were investigated by monitoring bacterial growth and metabolites. Results demonstrated that both the prodrug and formulation approaches resulted in a similar percentage of 5-ASA recovery under healthy conditions. On the contrary, during experiments simulating the GI physiology and microbiome of IBD patients (the target population) the formulation strategy resulted in a higher proportion of 5-ASA delivery to the colonic region as compared to the prodrug approach (P < 0.0001). Interestingly, the two products had distinct effects on the synthesis of key bacterial metabolites, such as lactate and short chain fatty acids, which varied according to disease state and ileal pH variability. Further, both 5-ASA and sulfasalazine significantly reduced the growth of the faecal microbiota sourced from six healthy humans. The findings support that the approach selected for colonic drug delivery could significantly influence the effectiveness of UC treatment, and highlight that drugs licensed for UC may differentially impact the growth and functioning of the colonic microbiota.


Asunto(s)
Antiinflamatorios no Esteroideos , Colon , Microbioma Gastrointestinal , Mesalamina , Sulfasalazina , Mesalamina/administración & dosificación , Mesalamina/farmacología , Humanos , Colon/microbiología , Colon/metabolismo , Colon/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Sulfasalazina/administración & dosificación , Profármacos/administración & dosificación , Sistemas de Liberación de Medicamentos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/microbiología , Concentración de Iones de Hidrógeno , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Liberación de Fármacos
5.
J Control Release ; 369: 163-178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521168

RESUMEN

The production of short chain fatty acids (SCFAs) by the colonic microbiome has numerous benefits for human health, including maintenance of epithelial barrier function, suppression of colitis, and protection against carcinogenesis. Despite the therapeutic potential, there is currently no optimal approach for elevating the colonic microbiome's synthesis of SCFAs. In this study, poly(D,l-lactide-co-glycolide) (PLGA) was investigated for this application, as it was hypothesised that the colonic microbiota would metabolise PLGA to its lactate monomers, which would promote the resident microbiota's synthesis of SCFAs. Two grades of spray dried PLGA, alongside a lactate bolus control, were screened in an advanced model of the human colon, known as the M-SHIME® system. Whilst the high molecular weight (Mw) grade of PLGA was stable in the presence of the microbiota sourced from three healthy humans, the low Mw PLGA (PLGA 2) was found to be metabolised. This microbial degradation led to sustained release of lactate over 48 h and increased concentrations of the SCFAs propionate and butyrate. Further, microbial synthesis of harmful ammonium was significantly reduced compared to untreated controls. Interestingly, both types of PLGA were found to influence the composition of the luminal and mucosal microbiota in a donor-specific manner. An in vitro model of an inflamed colonic epithelium also showed the polymer to affect the expression of pro- and anti-inflammatory markers, such as interleukins 8 and 10. The findings of this study reveal PLGA's sensitivity to enzymatic metabolism in the gut, which could be harnessed for therapeutic elevation of colonic SCFAs.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Microbioma Gastrointestinal/efectos de los fármacos , Ácidos Grasos Volátiles/metabolismo , Colon/metabolismo , Colon/microbiología , Ácido Láctico/metabolismo , Masculino , Adulto , Femenino
6.
Pharmaceutics ; 15(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37514143

RESUMEN

Most marketed peptide drugs are administered parenterally due to their inherent gastrointestinal (GI) instability and poor permeability across the GI epithelium. Several molecular design techniques, such as cyclisation and D-amino acid (D-AA) substitution, have been proposed to improve oral peptide drug bioavailability. However, very few of these techniques have been translated to the clinic. In addition, little is known about how synthetic peptide design may improve stability and permeability in the colon, a key site for the treatment of inflammatory bowel disease and colorectal cancer. In this study, we investigated the impact of various cyclisation modifications and D-AA substitutions on the enzymatic stability and colonic tissue permeability of native oxytocin and 11 oxytocin-based peptides. Results showed that the disulfide bond cyclisation present in native oxytocin provided an improved stability in a human colon model compared to a linear oxytocin derivative. Chloroacetyl cyclisation increased native oxytocin stability in the colonic model at 1.5 h by 30.0%, whereas thioether and N-terminal acetylated cyclisations offered no additional protection at 1.5 h. The site and number of D-AA substitutions were found to be critical for stability, with three D-AAs at Tyr, Ile and Leu, improving native oxytocin stability at 1.5 h in both linear and cyclic structures by 58.2% and 79.1%, respectively. Substitution of three D-AAs into native cyclic oxytocin significantly increased peptide permeability across rat colonic tissue; this may be because D-AA substitution favourably altered the peptide's secondary structure. This study is the first to show how the strategic design of peptide therapeutics could enable their delivery to the colon via the oral route.

7.
Int J Pharm ; 634: 122643, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36709014

RESUMEN

The oral delivery of peptide therapeutics could facilitate precision treatment of numerous gastrointestinal (GI) and systemic diseases with simple administration for patients. However, the vast majority of licensed peptide drugs are currently administered parenterally due to prohibitive peptide instability in the GI tract. As such, the development of GI-stable peptides is receiving considerable investment. This study provides researchers with the first tool to predict the GI stability of peptide therapeutics based solely on the amino acid sequence. Both unsupervised and supervised machine learning techniques were trained on literature-extracted data describing peptide stability in simulated gastric and small intestinal fluid (SGF and SIF). Based on 109 peptide incubations, classification models for SGF and SIF were developed. The best models utilized k-Nearest Neighbor (for SGF) and XGBoost (for SIF) algorithms, with accuracies of 75.1% (SGF) and 69.3% (SIF), and f1 scores of 84.5% (SGF) and 73.4% (SIF) under 5-fold cross-validation. Feature importance analysis demonstrated that peptides' lipophilicity, rigidity, and size were key determinants of stability. These models are now available to those working on the development of oral peptide therapeutics.


Asunto(s)
Productos Biológicos , Humanos , Productos Biológicos/metabolismo , Administración Oral , Péptidos , Tracto Gastrointestinal/metabolismo , Aprendizaje Automático
8.
J Control Release ; 353: 1107-1126, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528195

RESUMEN

Colonic drug delivery can facilitate access to unique therapeutic targets and has the potential to enhance drug bioavailability whilst reducing off-target effects. Delivering drugs to the colon requires considered formulation development, as both oral and rectal dosage forms can encounter challenges if the colon's distinct physiological environment is not appreciated. As the therapeutic opportunities surrounding colonic drug delivery multiply, the success of novel pharmaceuticals lies in their design. This review provides a modern insight into the key parameters determining the effective design and development of colon-targeted medicines. Influential physiological features governing the release, dissolution, stability, and absorption of drugs in the colon are first discussed, followed by an overview of the most reliable colon-targeted formulation strategies. Finally, the most appropriate in vitro, in vivo, and in silico preclinical investigations are presented, with the goal of inspiring strategic development of new colon-targeted therapeutics.


Asunto(s)
Colon , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas , Administración Oral , Disponibilidad Biológica
9.
Pharmaceutics ; 14(11)2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36365202

RESUMEN

Janus kinase (JAK) inhibitors, such as tofacitinib (Xeljanz) and filgotinib (Jyseleca), have been approved for treatment of ulcerative colitis with several other JAK inhibitors in late-stage clinical trials for inflammatory bowel disease (IBD). Despite their impressive efficacy, the risk of adverse effects accompanying the use of JAK inhibitors has brought the entire class under scrutiny, leading to them receiving an FDA black box warning. In this study we investigated whether ileocolonic-targeted delivery of a pan-JAK inhibitor, tofacitinib, can lead to increased tissue exposure and reduced systemic exposure compared to untargeted formulations. The stability of tofacitinib in the presence of rat colonic microbiota was first confirmed. Next, in vivo computed tomography imaging was performed in rats to determine the transit time and disintegration site of ileocolonic-targeted capsules compared to gastric release capsules. Pharmacokinetic studies demonstrated that systemic drug exposure was significantly decreased, and colonic tissue exposure increased at 10 mg/kg tofacitinib dosed in ileocolonic-targeted capsules compared to gastric release capsules and an oral solution. Finally, in a rat model of LPS-induced colonic inflammation, targeted tofacitinib capsules significantly reduced concentrations of proinflammatory interleukin 6 in colonic tissue compared to a vehicle-treated control (p = 0.0408), unlike gastric release tofacitinib capsules and orally administered dexamethasone. Overall, these results support further development of ileocolonic-targeted tofacitinib, and potentially other specific JAK inhibitors in pre-clinical and clinical development, for the treatment of IBD.

10.
Nanoscale ; 14(23): 8418-8428, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35639565

RESUMEN

The effective treatment of esophageal disease represents a significant unmet clinical need, as existing treatments often lead to unnecessary systemic drug exposure and suboptimal concentrations at the disease site. Here, surface-modified bioadhesive poly(lactic acid)-hyperbranched polyglycerol nanoparticles (BNPs), with an average 100-200 nm diameter, were developed for local and sustained esophageal drug delivery. BNPs showed significantly higher adhesion and permeation into ex vivo human and rat esophageal tissue than non-adhesive nanoparticles (NNPs) and had longer residence times within the rat esophagus in vivo. Incubation with human esophagus (Het-1A) cells confirmed BNPs' biocompatibility at clinically relevant concentrations. In a rat model of achalasia, nifedipine-loaded BNPs significantly enhanced esophageal drug exposure, increased therapeutic efficacy, and reduced systemic drug exposure compared to NNPs and free drug. The safety of BNPs was demonstrated by an absence of intestinal, hepatic, and splenic toxicity following administration. This study is the first to demonstrate the efficacy of BNPs for esophageal drug delivery and highlight their potential for improving the lives of patients suffering with esophageal conditions.


Asunto(s)
Enfermedades del Esófago , Nanopartículas , Animales , Glicerol , Humanos , Poliésteres , Polímeros , Ratas
11.
Trends Pharmacol Sci ; 43(4): 281-292, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35227509

RESUMEN

The microbiome is experiencing increasing scrutiny for its role in disease, and the number of new research reports describing microbiome-disease relationships is growing exponentially. Researchers are increasingly working to translate the emerging fundamental science into microbiome medicines that will address important unmet needs in the clinic. We summarise the types of microbiome medicines that have the most translational potential, and provide a detailed analysis of the current global microbiome medicines pipeline and the challenges facing clinical translation. The regulatory pipeline is currently dominated by probiotics intended for oral delivery to the gastrointestinal (GI) tract; however, several non-living biologics and small molecules provide notable exceptions. With the first microbiome medicine set to begin the regulatory submission process in 2022, it is an exciting time for the field.


Asunto(s)
Microbiota , Probióticos , Humanos , Preparaciones Farmacéuticas
12.
Int J Pharm ; 616: 121568, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35150845

RESUMEN

It is becoming clear that the human gut microbiome is critical to health and well-being, with increasing evidence demonstrating that dysbiosis can promote disease. Increasingly, precision probiotics are being investigated as investigational drug products for restoration of healthy microbiome balance. To reach the distal gut alive where the density of microbiota is highest, oral probiotics should be protected from harsh conditions during transit through the stomach and small intestines. At present, few probiotic formulations are designed with this delivery strategy in mind. This study employs an emerging machine learning (ML) technique, known as active ML, to predict how excipients at pharmaceutically relevant concentrations affect the intestinal proliferation of a common probiotic, Lactobacillus paracasei. Starting with a labelled dataset of just 6 bacteria-excipient interactions, active ML was able to predict the effects of a further 111 excipients using uncertainty sampling. The average certainty of the final model was 67.70% and experimental validation demonstrated that 3/4 excipient-probiotic interactions could be correctly predicted. The model can be used to enable superior probiotic delivery to maximise proliferation in vivo and marks the first use of active ML in microbiome science.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Probióticos , Disbiosis , Humanos , Aprendizaje Automático Supervisado
13.
Adv Drug Deliv Rev ; 182: 114098, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998901

RESUMEN

Digitalisation of the healthcare sector promises to revolutionise patient healthcare globally. From the different technologies, virtual tools including artificial intelligence, blockchain, virtual, and augmented reality, to name but a few, are providing significant benefits to patients and the pharmaceutical sector alike, ranging from improving access to clinicians and medicines, as well as improving real-time diagnoses and treatments. Indeed, it is envisioned that such technologies will communicate together in real-time, as well as with their physical counterparts, to create a large-scale, cyber healthcare system. Despite the significant benefits that virtual-based digital health technologies can bring to patient care, a number of challenges still remain, ranging from data security to acceptance within the healthcare sector. This review provides a timely account of the benefits and challenges of virtual health interventions, as well an outlook on how such technologies can be transitioned from research-focused towards real-world healthcare and pharmaceutical applications to transform treatment pathways for patients worldwide.


Asunto(s)
Inteligencia Artificial , Tecnología Digital/métodos , Industria Farmacéutica/organización & administración , Sector de Atención de Salud/organización & administración , Tecnología Biomédica , Ensayos Clínicos como Asunto , Desarrollo de Medicamentos/organización & administración , Descubrimiento de Drogas/organización & administración , Intercambio de Información en Salud , Humanos , Aprendizaje Automático , Aplicaciones Móviles , Tecnología de Sensores Remotos/métodos , Proyectos de Investigación , Factores de Tiempo , Estados Unidos , United States Food and Drug Administration , Realidad Virtual
14.
Water Res ; 208: 117861, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837812

RESUMEN

The infiltration of drugs into water is a key global issue, with pharmaceuticals being detected in all nearly aqueous systems at often alarming concentrations. Pharmaceutical contamination of environmental water supplies has been shown to negatively impact ecological equilibrium and pose a risk to human health. In this study, we design and develop a novel system for the removal of drugs from water, termed as Printzyme. The device, fabricated with stereolithography (SLA) 3D printing, immobilises laccase sourced from Trametes Versicolor within a poly(ethylene glycol) diacrylate hydrogel. We show that SLA printing is a sustainable method for enzyme entrapment under mild conditions, and measure the stability of the system when exposed to extremes of pH and temperature in comparison to free laccase. When tested for its drug removal capacity, the 3D printed device substantially degraded two dissolved drugs on the European water pollution watch list. When configured in the shape of a torus, the device effectively removed 95% of diclofenac and ethinylestradiol from aqueous solution within 24 and 2 h, respectively, more efficiently than free enzyme. Being customizable and reusable, these 3D printed devices could help to efficiently tackle the world's water pollution crisis, in a flexible, easily scalable, and cost-efficient manner.


Asunto(s)
Restauración y Remediación Ambiental , Lacasa , Preparaciones Farmacéuticas , Restauración y Remediación Ambiental/métodos , Humanos , Impresión Tridimensional , Estereolitografía , Trametes , Contaminación del Agua
15.
Adv Drug Deliv Rev ; 181: 114076, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34890739

RESUMEN

Targeted drug delivery to the colon offers a myriad of benefits, including treatment of local diseases, direct access to unique therapeutic targets and the potential for increasing systemic drug bioavailability and efficacy. Although a range of traditional colonic delivery technologies are available, these systems exhibit inconsistent drug release due to physiological variability between and within individuals, which may be further exacerbated by underlying disease states. In recent years, significant translational and commercial advances have been made with the introduction of new technologies that incorporate independent multi-stimuli release mechanisms (pH and/or microbiota-dependent release). Harnessing these advanced technologies offers new possibilities for drug delivery via the colon, including the delivery of biopharmaceuticals, vaccines, nutrients, and microbiome therapeutics for the treatment of both local and systemic diseases. This review details the latest advances in colonic drug delivery, with an emphasis on emerging therapeutic opportunities and clinical technology translation.


Asunto(s)
Colon/efectos de los fármacos , Colon/fisiología , Sistemas de Liberación de Medicamentos/métodos , Productos Biológicos/administración & dosificación , Preparaciones de Acción Retardada , Microbioma Gastrointestinal/fisiología , Tránsito Gastrointestinal/fisiología , Humanos , Concentración de Iones de Hidrógeno , Síndrome del Colon Irritable/tratamiento farmacológico , Prebióticos/administración & dosificación , Impresión Tridimensional , Probióticos/administración & dosificación , Factores de Tiempo , Vacunas/administración & dosificación
16.
Biotechnol Adv ; 54: 107797, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34260950

RESUMEN

Pivotal work in recent years has cast light on the importance of the human microbiome in maintenance of health and physiological response to drugs. It is now clear that gastrointestinal microbiota have the metabolic power to promote, inactivate, or even toxify the efficacy of a drug to a level of clinically relevant significance. At the same time, it appears that drug intake has the propensity to alter gut microbiome composition, potentially affecting health and response to other drugs. Since the precise composition of an individual's microbiome is unique, one's drug-microbiome relationship is similarly unique. Thus, in the age of evermore personalised medicine, the ability to predict individuals' drug-microbiome interactions is highly sought. Machine learning (ML) offers a powerful toolkit capable of characterising and predicting drug-microbiota interactions at the individual patient level. ML techniques have the potential to learn the mechanisms operating drug-microbiome activities and measure patients' risk of such occurrences. This review will outline current knowledge at the drug-microbiota interface, and present ML as a technique for examining and forecasting personalised drug-microbiome interactions. When harnessed effectively, ML could alter how the pharmaceutical industry and healthcare professionals consider the drug-microbiome axis in patient care.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Microbioma Gastrointestinal/fisiología , Humanos , Aprendizaje Automático
17.
Pharmaceutics ; 13(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959282

RESUMEN

Over 150 drugs are currently recognised as being susceptible to metabolism or bioaccumulation (together described as depletion) by gastrointestinal microorganisms; however, the true number is likely higher. Microbial drug depletion is often variable between and within individuals, depending on their unique composition of gut microbiota. Such variability can lead to significant differences in pharmacokinetics, which may be associated with dosing difficulties and lack of medication response. In this study, literature mining and unsupervised learning were used to curate a dataset of 455 drug-microbiota interactions. From this, 11 supervised learning models were developed that could predict drugs' susceptibility to depletion by gut microbiota. The best model, a tuned extremely randomised trees classifier, achieved performance metrics of AUROC: 75.1% ± 6.8; weighted recall: 79.2% ± 3.9; balanced accuracy: 69.0% ± 4.6; and weighted precision: 80.2% ± 3.7 when validated on 91 drugs. This machine learning model is the first of its kind and provides a rapid, reliable, and resource-friendly tool for researchers and industry professionals to screen drugs for susceptibility to depletion by gut microbiota. The recognition of drug-microbiome interactions can support successful drug development and promote better formulations and dosage regimens for patients.

18.
Adv Drug Deliv Rev ; 178: 113958, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478781

RESUMEN

Now more than ever, traditional healthcare models are being overhauled with digital technologies of Healthcare 4.0 increasingly adopted. Worldwide, digital devices are improving every stage of the patient care pathway. For one, sensors are being used to monitor patient metrics 24/7, permitting swift diagnosis and interventions. At the treatment stage, 3D printers are under investigation for the concept of personalised medicine by allowing patients access to on-demand, customisable therapeutics. Robots are also being explored for treatment, by empowering precision surgery, rehabilitation, or targeted drug delivery. Within medical logistics, drones are being leveraged to deliver critical treatments to remote areas, collect samples, and even provide emergency aid. To enable seamless integration within healthcare, the Internet of Things technology is being exploited to form closed-loop systems that remotely communicate with one another. This review outlines the most promising healthcare technologies and devices, their strengths, drawbacks, and opportunities for clinical adoption.


Asunto(s)
Tecnología Biomédica , Tecnología Digital , Atención al Paciente , Humanos
19.
Pharmaceutics ; 13(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34371718

RESUMEN

The human gut microbiome, composed of trillions of microorganisms, plays an essential role in human health. Many factors shape gut microbiome composition over the life span, including changes to diet, lifestyle, and medication use. Though not routinely tested during drug development, drugs can exert profound effects on the gut microbiome, potentially altering its functions and promoting disease. This study develops a machine learning (ML) model to predict whether drugs will impair the growth of 40 gut bacterial strains. Trained on over 18,600 drug-bacteria interactions, 13 distinct ML models are built and compared, including tree-based, ensemble, and artificial neural network techniques. Following hyperparameter tuning and multi-metric evaluation, a lead ML model is selected: a tuned extra trees algorithm with performances of AUROC: 0.857 (±0.014), recall: 0.587 (±0.063), precision: 0.800 (±0.053), and f1: 0.666 (±0.042). This model can be used by the pharmaceutical industry during drug development and could even be adapted for use in clinical settings.

20.
Trends Pharmacol Sci ; 42(9): 745-757, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34238624

RESUMEN

3D printing (3DP) is a progressive technology capable of transforming pharmaceutical development. However, despite its promising advantages, its transition into clinical settings remains slow. To make the vital leap to mainstream clinical practice and improve patient care, 3DP must harness modern technologies. Machine learning (ML), an influential branch of artificial intelligence, may be a key partner for 3DP. Together, 3DP and ML can utilise intelligence based on human learning to accelerate drug product development, ensure stringent quality control (QC), and inspire innovative dosage-form design. With ML's capabilities, streamlined 3DP drug delivery could mark the next era of personalised medicine. This review details how ML can be applied to elevate the 3DP of pharmaceuticals and importantly, how it can expedite 3DP's integration into mainstream healthcare.


Asunto(s)
Inteligencia Artificial , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Humanos , Aprendizaje Automático , Impresión Tridimensional , Tecnología Farmacéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA