Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Ann Clin Transl Neurol ; 9(12): 1941-1952, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36325744

RESUMEN

OBJECTIVE: The objectives of this study were to define the clinical and biochemical spectrum of spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) and to determine if aberrant cellular ceramide accumulation could be normalized by enzyme replacement. METHODS: Clinical features of 6 patients with SMA-PME were assessed by retrospective chart review, and a literature review of 24 previously published cases was performed. Leukocyte enzyme activity of acid ceramidase was assessed with a fluorescence-based assay. Skin fibroblast ceramide content and was assessed by high performance liquid chromatography, electrospray ionization tandem mass spectroscopy. Enzyme replacement was assessed using recombinant human acid ceramidase (rhAC) in vitro. RESULTS: The six new patients showed the hallmark features of SMA-PME, with variable initial symptom and age of onset. Five of six patients carried at least one of the recurrent SMA-PME variants observed in two specific codons of ASAH1. A review of 30 total cases revealed that patients who were homozygous for the most common c.125C > T variant presented in the first decade of life with limb-girdle weakness as the initial symptom. Sensorineural hearing loss was associated with the c.456A > C variant. Leukocyte acid ceramidase activity varied from 4.1%-13.1% of controls. Ceramide species in fibroblasts were detected and total cellular ceramide content was elevated by 2 to 9-fold compared to controls. Treatment with rhAC normalized ceramide profiles in cultured fibroblasts to control levels within 48 h. INTERPRETATION: This study details the genotype-phenotype correlations observed in SMA-PME and shows the impact of rhAC to correct the abnormal cellular ceramide profile in cells.


Asunto(s)
Ceramidasa Ácida , Epilepsias Mioclónicas Progresivas , Humanos , Ceramidasa Ácida/genética , Ceramidas , Estudios Retrospectivos , Epilepsias Mioclónicas Progresivas/genética
2.
Biomed Res Int ; 2014: 818670, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24701584

RESUMEN

The capacity to predict and visualize all theoretically possible glycerophospholipid molecular identities present in lipidomic datasets is currently limited. To address this issue, we expanded the search-engine and compositional databases of the online Visualization and Phospholipid Identification (VaLID) bioinformatic tool to include the glycerophosphoinositol superfamily. VaLID v1.0.0 originally allowed exact and average mass libraries of 736,584 individual species from eight phospholipid classes: glycerophosphates, glyceropyrophosphates, glycerophosphocholines, glycerophosphoethanolamines, glycerophosphoglycerols, glycerophosphoglycerophosphates, glycerophosphoserines, and cytidine 5'-diphosphate 1,2-diacyl-sn-glycerols to be searched for any mass to charge value (with adjustable tolerance levels) under a variety of mass spectrometry conditions. Here, we describe an update that now includes all possible glycerophosphoinositols, glycerophosphoinositol monophosphates, glycerophosphoinositol bisphosphates, and glycerophosphoinositol trisphosphates. This update expands the total number of lipid species represented in the VaLID v2.0.0 database to 1,473,168 phospholipids. Each phospholipid can be generated in skeletal representation. A subset of species curated by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics (CTPNL) team is provided as an array of high-resolution structures. VaLID is freely available and responds to all users through the CTPNL resources web site.


Asunto(s)
Minería de Datos , Bases de Datos Factuales , Fosfatos de Inositol/metabolismo , Internet , Metabolismo de los Lípidos , Programas Informáticos , Animales , Humanos
3.
Bioinformatics ; 29(2): 284-5, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23162086

RESUMEN

MOTIVATION: Establishing phospholipid identities in large lipidomic datasets is a labour-intensive process. Where genomics and proteomics capitalize on sequence-based signatures, glycerophospholipids lack easily definable molecular fingerprints. Carbon chain length, degree of unsaturation, linkage, and polar head group identity must be calculated from mass to charge (m/z) ratios under defined mass spectrometry (MS) conditions. Given increasing MS sensitivity, many m/z values are not represented in existing prediction engines. To address this need, Visualization and Phospholipid Identification is a web-based application that returns all theoretically possible phospholipids for any m/z value and MS condition. Visualization algorithms produce multiple chemical structure files for each species. Curated lipids detected by the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics are provided as high-resolution structures. AVAILABILITY: VaLID is available through the Canadian Institutes of Health Research Training Program in Neurodegenerative Lipidomics resources web site at https://www.med.uottawa.ca/lipidomics/resources.html. CONTACTS: lipawrd@uottawa.ca SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Glicerofosfolípidos/química , Motor de Búsqueda , Algoritmos , Gráficos por Computador , Bases de Datos de Compuestos Químicos , Internet , Espectrometría de Masas , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA