Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37568603

RESUMEN

The worldwide incidence of hepatocellular carcinoma (HCC) continues to rise, in part due to poor diet, limited exercise, and alcohol abuse. Numerous studies have suggested that the loss or mutation of PTEN plays a critical role in HCC tumorigenesis through the activation of the PI3K/Akt signaling axis. The homozygous knockout of PTEN in the livers of mice results in the accumulation of fat (steatosis), inflammation, fibrosis, and eventually progression to HCC. This phenotype bears a striking similarity to non-alcoholic steatohepatitis (NASH) which is thought to occupy an intermediate stage between non-alcoholic fatty liver disease (NAFLD), fibrosis, and HCC. The molecular and physiological phenotypes that manifest during the transition to HCC suggest that molecular imaging could provide a non-invasive screening platform to identify the hallmarks of HCC initiation prior to the presentation of clinical disease. We have carried out longitudinal imaging studies on the liver-specific PTEN knockout mouse model using CT, MRI, and multi-tracer PET to interrogate liver size, steatosis, inflammation, and apoptosis. In male PTEN knockout mice, significant steatosis was observed as early as 3 months using both magnetic resonance spectroscopy (MRS) and computed tomography (CT). Enhanced uptake of the apoptosis tracer 18F-TBD was also observed in the livers of male PTEN homozygous knockout mice between 3 and 4 months of age relative to heterozygous knockout controls. Liver uptake of the inflammation tracer [18F]4FN remained relatively low and constant over 7 months in male PTEN homozygous knockout mice, suggesting the suppression of high-energy ROS/RNS with PTEN deletion relative to heterozygous males where the [18F]4FN liver uptake was elevated at early and late time points. All male PTEN homozygous mice developed HCC lesions by month 10. In contrast to the male cohort, only 20% (2 out of 10) of female PTEN homozygous knockout mice developed HCC lesions by month 10. Steatosis was significantly less pronounced in the female PTEN homozygous knockout mice relative to males and could not accurately predict the eventual occurrence of HCC. As with the males, the [18F]4FN uptake in female PTEN homozygous knockout mice was low and constant throughout the time course. The liver uptake of 18F-TBD at 3 and 4.5 months was higher in the two female PTEN knockout mice that would eventually develop HCC and was the most predictive imaging biomarker for HCC in the female cohort. These studies demonstrate the diagnostic and prognostic role of multi-modal imaging in HCC mouse models and provide compelling evidence that disease progression in the PTEN knockout model is highly dependent on gender.

2.
Bone Marrow Transplant ; 56(8): 1818-1827, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33658643

RESUMEN

Despite advances in gene therapy allogeneic hematopoietic stem cell transplants (HSCT) remains the most effective way to cure sickle cell disease (SCD). However, there are substantial challenges including lack of suitable donors, therapy-related toxicity (TRM) and risk of graft-versus-host disease (GvHD). Perhaps the most critical question is when to do a transplant for SCD. Safer transplant protocols for HLA-disparate HSCT is needed before transplants are widely accepted for SCD. Although risk of GvHD and TRM are less with T-cell-deplete HSCT and reduced-intensity conditioning (RIC), transplant rejection is a challenge. We have reported graft rejection of T cell-depleted non-myeloablative HSCT can be overcome in wild type fully mis-matched recipient mice, using donor-derived anti-3rd party central memory CD8-positive veto cells combined with short-term low-dose rapamycin. Here, we report safety and efficacy of this approach in a murine model for SCD. Durable donor-derived chimerism was achieved using this strategy with reversal of pathological parameters of SCD, including complete conversion to normal donor-derived red cells, and correction of splenomegaly and the levels of circulating reticulocytes, hematocrit, and hemoglobin.


Asunto(s)
Anemia de Células Falciformes , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Anemia de Células Falciformes/terapia , Animales , Quimerismo , Enfermedad Injerto contra Huésped/prevención & control , Ratones , Acondicionamiento Pretrasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA