Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Stem Cell Reports ; 10(6): 1751-1765, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29779899

RESUMEN

In the developing nervous system, neural stem cells are polarized and maintain an apical domain facing a central lumen. The presence of apical membrane is thought to have a profound influence on maintaining the stem cell state. With the onset of neurogenesis, cells lose their polarization, and the concomitant loss of the apical domain coincides with a loss of the stem cell identity. Little is known about the molecular signals controlling apical membrane size. Here, we use two neuroepithelial cell systems, one derived from regenerating axolotl spinal cord and the other from human embryonic stem cells, to identify a molecular signaling pathway initiated by lysophosphatidic acid that controls apical membrane size and consequently controls and maintains epithelial organization and lumen size in neuroepithelial rosettes. This apical domain size increase occurs independently of effects on proliferation and involves a serum response factor-dependent transcriptional induction of junctional and apical membrane components.


Asunto(s)
Autorrenovación de las Células , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neurogénesis , Transducción de Señal , Biomarcadores , Técnicas de Cultivo de Célula , Diferenciación Celular , Membrana Celular/metabolismo , Polaridad Celular , Proliferación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Lisofosfolípidos/farmacología , Células-Madre Neurales/efectos de los fármacos , Células Neuroepiteliales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Uniones Estrechas , Transcripción Genética
2.
Methods Mol Biol ; 916: 197-202, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22914942

RESUMEN

Urodele amphibians such as axolotl are well known for their regenerative potential of the damaged central nervous system structures. Upon tail amputation, neural stem cells behind the amputation plane undergo self-renewing divisions and contribute to the functional spinal cord in the newly formed regenerate. The neural stem cells, harboring this potential, can be isolated from the animal and cultured under the suspension conditions. After 2-3 weeks in vitro they will proliferate and form the floating aggregates of the spherical shape, so-called neurospheres. Reimplanted back into the animal, the neurospheres can efficiently integrate in the spinal cord lesion and contribute to the following spinal cord regeneration events. Here we demonstrate the unique method of the axolotl tail spinal cord regeneration from the implanted neurosphere.


Asunto(s)
Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Regeneración , Médula Espinal/citología , Médula Espinal/fisiología , Trasplante de Células Madre/métodos , Cola (estructura animal)/fisiología , Ambystoma mexicanum , Amputación Quirúrgica , Animales , Técnicas de Cultivo de Célula , Proliferación Celular , Separación Celular , Cola (estructura animal)/cirugía
3.
Proc Natl Acad Sci U S A ; 109(34): E2258-66, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22829665

RESUMEN

We show that after tail amputation in Ambystoma mexicanum (Axolotl) the correct number and spacing of dorsal root ganglia are regenerated. By transplantation of spinal cord tissue and nonclonal neurospheres, we show that the central spinal cord represents a source of peripheral nervous system cells. Interestingly, melanophores migrate from preexisting precursors in the skin. Finally, we demonstrate that implantation of a clonally derived spinal cord neurosphere can result in reconstitution of all examined cell types in the regenerating central spinal cord, suggesting derivation of a cell with spinal cord stem cell properties.


Asunto(s)
Sistema Nervioso Central/fisiología , Sistema Nervioso Periférico/fisiología , Regeneración/fisiología , Cola (estructura animal)/fisiología , Secuencia de Aminoácidos , Animales , Ganglios Espinales/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Médula Espinal/citología , Células Madre/citología , Urodelos
4.
Development ; 134(11): 2083-93, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17507409

RESUMEN

Complete regeneration of the spinal cord occurs after tail regeneration in urodele amphibians such as the axolotl. Little is known about how neural progenitor cells are recruited from the mature tail, how they populate the regenerating spinal cord, and whether the neural progenitor cells are multipotent. To address these issues we used three types of cell fate mapping. By grafting green fluorescent protein-positive (GFP(+)) spinal cord we show that a 500 microm region adjacent to the amputation plane generates the neural progenitors for regeneration. We further tracked single nuclear-GFP-labeled cells as they proliferated during regeneration, observing their spatial distribution, and ultimately their expression of the progenitor markers PAX7 and PAX6. Most progenitors generate descendents that expand along the anterior/posterior (A/P) axis, but remain close to the dorsal/ventral (D/V) location of the parent. A minority of clones spanned multiple D/V domains, taking up differing molecular identities, indicating that cells can execute multipotency in vivo. In parallel experiments, bulk labeling of dorsally or ventrally restricted progenitor cells revealed that ventral cells at the distal end of the regenerating spinal cord switch to dorsal cell fates. Analysis of PAX7 and PAX6 expression along the regenerating spinal cord indicated that these markers are expressed in dorsal and lateral domains all along the spinal cord except at the distal terminus. These results suggest that neural progenitor identity is destabilized or altered in the terminal vesicle region, from which clear migration of cells into the surrounding blastema is also observed.


Asunto(s)
Ambystoma , Diferenciación Celular/fisiología , Células Madre Multipotentes/citología , Regeneración/fisiología , Médula Espinal/fisiología , Animales , Linaje de la Célula , Movimiento Celular/fisiología , Crioultramicrotomía , Electroporación , Proteínas del Ojo/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/metabolismo , Factor de Transcripción PAX6 , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Proteínas Represoras/metabolismo , Médula Espinal/citología , Médula Espinal/trasplante
5.
Dev Dyn ; 236(2): 389-403, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17183528

RESUMEN

Using cell markers and grafting, we examined the timing of migration and developmental potential of trunk neural crest cells in axolotl. No obvious differences in pathway choice were noted for DiI-labeling at different lateral or medial positions of the trunk neural folds in neurulae, which contributed not only to neural crest but also to Rohon-Beard neurons. Labeling wild-type dorsal trunks at pre- and early-migratory stages revealed that individual neural crest cells migrate away from the neural tube along two main routes: first, dorsolaterally between the epidermis and somites and, later, ventromedially between the somites and neural tube/notochord. Dorsolaterally migrating crest primarily forms pigment cells, with those from anterior (but not mid or posterior) trunk neural folds also contributing glia and neurons to the lateral line. White mutants have impaired dorsolateral but normal ventromedial migration. At late migratory stages, most labeled cells move along the ventromedial pathway or into the dorsal fin. Contrasting with other anamniotes, axolotl has a minor neural crest contribution to the dorsal fin, most of which arises from the dermomyotome. Taken together, the results reveal stereotypic migration and differentiation of neural crest cells in axolotl that differ from other vertebrates in timing of entry onto the dorsolateral pathway and extent of contribution to some derivatives.


Asunto(s)
Ambystoma/embriología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Cresta Neural/embriología , Animales , Carbocianinas , Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Microscopía Confocal , Microscopía Fluorescente , Cresta Neural/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA