Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 235(9): 6194-6203, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31975433

RESUMEN

Hypoxia in prostate tumours has been associated with disease progression and metastasis. MicroRNAs are short noncoding RNA molecules that are important in several cell processes, but their role in hypoxic signalling is still poorly understood. miR-210 has been linked with hypoxic mechanisms, but this relationship has been poorly characterised in prostate cancer. In this report, the link between hypoxia and miR-210 in prostate cancer cells is investigated. Polymerase chain reaction analysis demonstrates that miR-210 is induced by hypoxia in prostate cancer cells using in vitro cell models and an in vivo prostate tumour xenograft model. Analysis of The Cancer Genome Atlas prostate biopsy datasets shows that miR-210 is significantly correlated with Gleason grade and other clinical markers of prostate cancer progression. Neural cell adhesion molecule (NCAM) is identified as a target of miR-210, providing a biological mechanism whereby hypoxia-induced miR-210 expression can contribute to prostate cancer. This study provides evidence that miR-210 is an important regulator of cell response to hypoxic stress and proposes that its regulation of NCAM may play an important role in the pathogenesis of prostate cancer.


Asunto(s)
MicroARNs/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Neoplasias de la Próstata/genética , Hipoxia Tumoral/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Masculino , Ratones , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Transducción de Señal/genética
2.
Prostate ; 76(13): 1146-59, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27198154

RESUMEN

BACKGROUND: In prostate cancer (PCa), abnormal expression of several microRNAs (miRNAs) has been previously reported. Increasing evidence shows that aberrant epigenetic regulation of miRNAs is a contributing factor to their altered expression in cancer. In this study, we investigate whether expression of miR-200c and miR-141 in PCa is related to the DNA methylation status of their promoter. METHODS: PCR analysis of miR-200c and miR-141, and CpG methylation analysis of their common promoter, was performed in PCa cell-lines and in archived prostate biopsy specimens. The biological significance of miR-200c and miR-141 expression in prostate cancer cells was assessed by a series of in vitro bioassays and the effect on proposed targets DNMT3A and TET1/TET3 was investigated. The effect on promoter methylation status in cells treated with demethylating agents was also examined. RESULTS: miR-200c and miR-141 are both highly elevated in LNCaP, 22RV1, and DU145 cells, but significantly reduced in PC3 cells. This correlates inversely with the methylation status of the miR-200c/miR-141 promoter, which is unmethylated in LNCaP, 22RV1, and DU145 cells, but hypermethylated in PC3. In PC3 cells, miR-200c and miR-141 expression is subsequently elevated by treatment with the demethylating drug decitabine (5-aza-2'deoxycytidine) and by knockdown of DNA methyltransferase 1 (DNMT1), suggesting their expression is regulated by methylation. Expression of miR-200c and miR-141 in prostate biopsy tissue was inversely correlated with methylation in promoter CpG sites closest to the miR-200c/miR-141 loci. In vitro, over-expression of miR-200c in PC3 cells inhibited growth and clonogenic potential, as well as inducing apoptosis. Expression of the genes DNMT3A and TET1/TET3 were down-regulated by miR-200c and miR-141 respectively. Finally, treatment with the soy isoflavone genistein caused demethylation of the promoter CpG sites closest to the miR-200c/miR-141 loci resulting in increased miR-200c expression. CONCLUSIONS: Our findings provide evidence that miR-200c and miR-141 are under epigenetic regulation in PCa cells. We propose that profiling their expression and methylation status may have potential as a novel biomarker or focus of therapeutic intervention in the diagnosis and prognosis of PCa. Prostate 76:1146-1159, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Metilación de ADN/fisiología , MicroARNs/fisiología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Animales , Bovinos , Línea Celular Tumoral , Proliferación Celular/fisiología , Epigénesis Genética/fisiología , Humanos , Masculino
3.
Prostate ; 76(7): 637-48, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26847530

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) are small, non-coding RNA molecules with an important role in cancer. In prostate cancer, several miRNAs are expressed abnormally suggesting they may be useful markers for diagnosis, prognosis, and potential therapeutic intervention in this disease. However, the contribution of individual miRNAs to the development and progression of this disease remains poorly understood. This study investigated the role of miR-24, which has not been extensively studied in relation to prostate cancer. METHODS: We used PCR to investigate the expression of miR-24 in a panel of prostate cancer cell-lines and in a series of clinical prostate biopsy specimens. The biological significance of miR-24 expression in prostate cancer cells was assessed by a series of in vitro bioassays and the effect on proposed targets p27 (CDKN1B) and p16 (CDK2NA) was investigated. RESULTS: We showed that miR-24 expression was significantly lower in prostate cancer cell lines compared to a normal prostate epithelial cell line. Decreased expression of miR-24 was also more frequently observed in both needle core and prostatectomy tumor tissue relative to matched normal tissue. Low miR-24 expression correlated with high PSA serum levels and other markers of increased prostate cancer progression. Importantly, over-expression of miR-24 inhibited cell cycle, proliferation, migration, and clonogenic potential of prostate cancer cells, as well as inducing apoptosis. p27 and p16 were confirmed as targets of miR-24 in prostate cancer cells and a significant inverse correlation between miR-24 and p27 was revealed in clinical prostatectomy specimens. CONCLUSIONS: These findings provide evidence that miR-24 has a tumor suppressor role in prostate cancer and also targets p27 and p16 in prostate cancer cells. We propose that it may be a useful progression biomarker or focus of therapeutic intervention for this disease.


Asunto(s)
Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Progresión de la Enfermedad , Humanos , Masculino , MicroARNs/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA