Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Am J Physiol Renal Physiol ; 308(4): F339-48, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25520010

RESUMEN

Previous studies from our laboratory have suggested that degenerin proteins contribute to myogenic constriction, a mechanism of blood flow regulation and protection against pressure-dependent organ injury, in renal vessels. The goal of the present study was to determine the importance of one family member, acid-sensing ion channel 2 (ASIC2), in myogenic constriction of renal interlobar arteries, myogenic regulation of whole kidney blood flow, renal injury, and blood pressure using ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice. Myogenic constriction in renal interlobar arteries was impaired in ASIC2(+/-) and ASIC2(-/-) mice, whereas constriction to KCl/phenylephrine was unchanged. Correction of whole kidney renal vascular resistance (RVR) during the first 5 s after a 10- to 20-mmHg step increase in perfusion pressure, a timeframe associated with myogenic-mediated correction of RVR, was slowed (4.2 ± 0.9, 0.3 ± 0.7, and 2.4 ± 0.3 resistance units/s in ASIC2(+/+), ASIC2(+/-), and ASIC2(-/-) mice). Although modest reductions in function were observed in ASIC2(-/-) mice, greater reductions were observed in ASIC2(+/-) mice, which may be explained by protein-protein interactions of ASIC2 with other degenerins. Isolated glomeruli from ASIC2(+/-) and ASIC2(-/-) mice had modest alterations in the expression of inflammation and injury markers (transforming growth factor-ß, mouse anti-target of antiproliferative antibody-1, and nephrin), whereas ASIC2(+/-) mice had an increase in the remodeling marker collagen type III. Consistent with a more severe loss of function, mean arterial pressure was increased in ASIC2(+/-) mice (131 ± 3 mmHg) but not in ASIC2(-/-) mice (122 ± 3 vs. 117 ± 2 mmHg in ASIC2(+/+) mice). These results suggest that ASIC2 contributes to transduction of the renal myogenic response and are consistent with the protective role of myogenic constriction against renal injury and hypertension.


Asunto(s)
Canales Iónicos Sensibles al Ácido/deficiencia , Riñón/irrigación sanguínea , Músculo Liso Vascular/metabolismo , Circulación Renal , Vasoconstricción , Canales Iónicos Sensibles al Ácido/genética , Animales , Presión Arterial , Biomarcadores/metabolismo , Colágeno Tipo III/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Mediadores de Inflamación/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Enfermedades Renales/fisiopatología , Masculino , Mecanotransducción Celular , Ratones Noqueados , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiopatología , Fenotipo , Arteria Renal/efectos de los fármacos , Arteria Renal/metabolismo , Circulación Renal/efectos de los fármacos , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología
2.
Am J Physiol Renal Physiol ; 298(2): F285-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19889952

RESUMEN

Renal blood flow (RBF) autoregulation is mediated by at least two mechanisms, the fast acting myogenic response (approximately 5 s) and slow acting tubuloglomerular feedback (TGF; approximately 25 s). Previous studies suggest epithelial Na(+) channel (ENaC) family proteins, beta-ENaC in particular, mediate myogenic constriction in isolated renal interlobar arteries. However, it is unknown whether beta-ENaC-mediated myogenic constriction contributes to RBF autoregulation in vivo. Therefore, the goal of this investigation was to determine whether the myogenic mediated RBF autoregulation is inhibited in a mouse model of reduced beta-ENaC (m/m). To address this goal, we evaluated the temporal response of RBF and renal vascular resistance (RVR) to a 2-min step increase in mean arterial pressure (MAP). Pressure-induced changes in RBF and RVR at 0-5, 6-25, and 110-120 s after step increase in MAP were used to assess the contribution of myogenic and TGF mechanisms and steady-state autoregulation, respectively. The rate of the initial increase in RVR, attributed to the myogenic mechanism, was reduced by approximately 50% in m/m mice, indicating the speed of the myogenic response was inhibited. Steady-state autoregulation was similar between beta-ENaC +/+ and m/m mice. Although the rate of the secondary increase in RVR, attributed to TGF, was similar in beta-ENaC +/+ and m/m mice, however, it occurred over a longer period (+10 s), which may have allowed TGF to compensate for a loss in myogenic autoregulation. Our findings suggest beta-ENaC is an important mediator of renal myogenic constriction-mediated RBF autoregulation in vivo.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Homeostasis , Circulación Renal/fisiología , Adaptación Fisiológica , Animales , Presión Sanguínea/fisiología , Regulación hacia Abajo , Retroalimentación Fisiológica , Hemodinámica , Glomérulos Renales/fisiología , Túbulos Renales/fisiología , Ratones , Ratones Mutantes , Músculo Liso Vascular/fisiología , Factores de Tiempo , Resistencia Vascular/fisiología
3.
Am J Physiol Heart Circ Physiol ; 294(5): H2022-30, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18310515

RESUMEN

Recent studies suggest members of the degenerin (DEG)/epithelial Na(+) channel (ENaC)/acid-sensing ion channel (ASIC) protein family play an important role in vascular smooth muscle cell (VSMC) migration. In a previous investigation, we found suppression of a certain DEG/ENaC/ASIC member, ASIC2, increased VSMC chemotactic migration, raising the possibility that ASIC2 may play an inhibitory role. Because ASIC2 protein was retained in the cytoplasm, we reasoned increasing surface expression of ASIC2 might unmask the inhibitory role of ASIC2 in VSMC migration so we could test the hypothesis that ASIC2 inhibits VSMC migration. Therefore, we used the chemical chaperone glycerol to enhance ASIC2 expression. Glycerol 1) increased cytoplasm ASIC2 expression, 2) permitted detection of ASIC2 at the cell surface, and 3) inhibited platelet-derived growth factor (PDGF)-bb mediated VSMC migration. Furthermore, ASIC2 silencing completely abolished the inhibitory effect of glycerol on migration, suggesting upregulation of ASIC2 is responsible for glycerol-induced inhibition of VSMC migration. Because other investigators have shown that glycerol regulates ENaC/ASIC via interactions with a certain heat shock protein, heat shock protein 70 (Hsc70), we wanted to determine the importance of Hsc70 on ASIC2 expression in VSMCs. We found that Hsc70 silencing increases ASIC2 cell surface expression and inhibits VSMC migration, which is abolished by cosilencing ASIC2. These data demonstrate that Hsc70 inhibits ASIC2 expression, and, when the inhibitory effect of Hsc70 is removed, ASIC2 expression increases, resulting in reduced VSMC migration. Because VSMC migration contributes to vasculogenesis and remodeling following vascular injury, our findings raise the possibility that ASIC2-Hsc70 interactions may play a role in these processes.


Asunto(s)
Movimiento Celular , Canales Epiteliales de Sodio/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas de la Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Animales , Becaplermina , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular/efectos de los fármacos , Citoplasma/metabolismo , Canales de Sodio Degenerina , Canales Epiteliales de Sodio/genética , Glicerol/farmacología , Proteínas del Choque Térmico HSC70/genética , Proteínas de la Membrana/genética , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Transducción de Señal , Canales de Sodio/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA