Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Environ Sci Technol ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39466166

RESUMEN

Biodegradation is one of the most important processes influencing the fate of organic contaminants in the environment. Quantitative understanding of the spatial variability in environmental biodegradation is still largely uncharted territory. Here, we conducted modified OECD 309 tests to determine first-order biodegradation rate constants for 97 compounds in 18 freshwater river segments in five European countries: Sweden, Germany, Switzerland, Spain, and Greece. All but two of the compounds showed significant spatial variability in rate constants across European rivers (ANOVA, P < 0.05). The median standard deviation of the biodegradation rate constant between rivers was a factor of 3. The spatial variability was similar between pristine and contaminated river segments. The longitude, total organic carbon, and clay content of sediment were the three most significant explanatory variables for the spatial variability (redundancy analysis, P < 0.05). Similarities in the spatial pattern of biodegradation rates were observed for some groups of compounds sharing a given functional group. The pronounced spatial variability presents challenges for the use of biodegradation simulation tests to assess chemical persistence. To reflect the variability in the biodegradation rate, the modified OECD 309 test would have to be repeated with water and sediment from multiple sites.

2.
Environ Sci Technol ; 58(31): 13587-13593, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39042050

RESUMEN

Twenty years since coming into force, the Stockholm Convention has become a "living" global agreement that has allowed for the addition of substances that are likely, as a result of their long-range environmental transport (LRET), to lead to significant adverse effects. The recent listing of the phenolic benzotriazole UV-328 in Annex A and a draft nomination of three cyclic volatile methylsiloxanes (cVMS) for Annex B draw attention to the fact that many chemicals are subject to LRET and that this can lead to questionable nominations. The nomination of UV-328 and the draft nomination of cVMS also raise the spectre of regrettable substitutions. At the same time, atmospheric monitoring across the globe reveals that environmental releases of several unintentionally produced POPs listed in Annex C, such as hexachlorobenzene and hexachlorobutadiene, are continuing unabated, highlighting shortcomings in the enforcement of the minimum measures required under Article 5. There is also no evidence of efforts to substitute a chemical whose use has been known for three decades to unintentionally produce polychlorinated biphenyls. These developments need to be rectified to safeguard the long-term viability and acceptance of a global treaty of undeniable importance.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Política Ambiental , Cooperación Internacional , Triazoles , Siloxanos
4.
Environ Sci Technol ; 58(16): 7144-7153, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527158

RESUMEN

Biodegradation plays a key role in the fate of chemicals in the environment. The variability of biodegradation in time can cause uncertainty in evaluating the environmental persistence and risk of chemicals. However, the seasonality of biodegradation in rivers has not yet been the subject of environmentally relevant testing and systematic investigation for large numbers of chemicals. In this work, we studied the biodegradation of 96 compounds during four seasons at four locations (up- and downstream of WWTPs located on two Swedish rivers). Significant seasonality (ANOVA, p < 0.05) of the first-order rate constant for primary biodegradation was observed for most compounds. Variations in pH and total bacterial cell count were not the major factors explaining the seasonality of biodegradation. Deviation from the classical Arrhenius-type behavior was observed for most of the studied compounds, which calls into question the application of this relationship to correct biodegradation rate constants for differences in environmental temperature. Similarities in magnitude and seasonality of biodegradation rate constants were observed for some groups of chemicals possessing the same functional groups. Moreover, reduced seasonality of biodegradation was observed downstream of WWTPs, while biodegradation rates of most compounds were not significantly different between up- and downstream.

5.
Environ Sci Process Impacts ; 26(2): 400-410, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38205846

RESUMEN

The removal efficiency (RE) of organic contaminants in wastewater treatment plants (WWTPs) is a major determinant of the environmental impact of chemicals which are discharged to wastewater. In a recent study, non-target screening analysis was applied to quantify the percentage removal efficiency (RE%) of more than 300 polar contaminants, by analyzing influent and effluent samples from a Swedish WWTP with direct injection UHPLC-Orbitrap-MS/MS. Based on subsets extracted from these data, we developed quantitative structure-property relationships (QSPRs) for the prediction of WWTP breakthrough (BT) to the effluent water. QSPRs were developed by means of multiple linear regression (MLR) and were selected after checking for overfitting and chance relationships by means of bootstrap and randomization procedures. A first model provided good fitting performance, showing that the proposed approach for the development of QSPRs for the prediction of BT is reasonable. By further populating the dataset with similar chemicals using a Tanimoto index approach based on substructure count fingerprints, a second QSPR indicated that the prediction of BT is also applicable to new chemicals sufficiently similar to the training set. Finally, a class-specific QSPR for PEGs and PPGs showed BT prediction trends consistent with known degradation pathways.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Aguas Residuales , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
6.
Environ Sci Process Impacts ; 25(7): 1238-1251, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37350243

RESUMEN

Surfactants are a class of chemicals released in large quantities to water, and therefore bioconcentration in fish is an important component of their safety assessment. Their structural diversity, which encompasses nonionic, anionic, cationic and zwitterionic molecules with a broad range of lipophilicity, makes their evaluation challenging. A strong influence of environmental pH adds a further layer of complexity to their bioconcentration assessment. Here we present a framework that penetrates this complexity. Using simple equations derived from current understanding of the relevant underlying processes, we plot the key bioconcentration parameters (uptake rate constant, elimination rate constant and bioconcentration factor) as a function of its membrane lipid/water distribution ratio and the neutral fraction of the chemical in water at pH 8.1 and at pH 6.1. On this chemical space plot, we indicate boundaries at which four resistance terms (perfusion with water, transcellular, paracellular, and perfusion with blood) limit transport of surfactants across the gills. We then show that the bioconcentration parameters predicted by this framework align well with in vivo measurements of anionic, cationic and nonionic surfactants in fish. In doing so, we demonstrate how the framework can be used to explore expected differences in bioconcentration behavior within a given sub-class of surfactants, to assess how pH will influence bioconcentration, to identify the underlying processes governing bioconcentration of a particular surfactant, and to discover knowledge gaps that require further research. This framework for amphiphilic chemicals may function as a template for improved understanding of the accumulation potential of other ionizable chemicals of environmental concern, such as pharmaceuticals or dyes.


Asunto(s)
Peces , Tensoactivos , Contaminantes Químicos del Agua , Tensoactivos/química , Tensoactivos/metabolismo , Peces/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Branquias/metabolismo
7.
Environ Sci Process Impacts ; 25(3): 496-506, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36826379

RESUMEN

Field data from two latitudinal transects in Europe and Canada were gathered to better characterize the atmospheric fate of three cyclic methylsiloxanes (cVMSs), i.e., octamethyl-cyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6). During a year-long, seasonally resolved outdoor air sampling campaign, passive samplers with an ultra-clean sorbent were deployed at 15 sampling sites covering latitudes ranging from the source regions (43.7-50.7 °N) to the Arctic (79-82.5 °N). For each site, one of two passive samplers and one of two field blanks were separately extracted and analyzed for the cVMSs at two different laboratories using gas-chromatography-mass spectrometry. Whereas the use of a particular batch of sorbent and the applied cleaning procedure to a large extent controlled the levels of cVMS in field blanks, and therefore also the method detection and quantification limits, minor site-specific differences in field blank contamination were apparent. Excellent agreement between duplicates was obtained, with 95% of the concentrations reported by the two laboratories falling within a factor of 1.6 of each other. Nearly all data show a monotonic relationship between the concentration and distance from the major source regions. Concentrations in source regions were comparatively constant throughout the year, while the concentration gradient towards remote regions became steeper during summer when removal via OH radicals is at its maximum. Concentrations of the different cVMS oligomers were highly correlated within a given transect. Changes in relative abundance of cVMS oligomers along the transect were in agreement with relative atmospheric degradation rates via OH radicals.


Asunto(s)
Monitoreo del Ambiente , Siloxanos , Monitoreo del Ambiente/métodos , Siloxanos/análisis , Estaciones del Año , Cromatografía de Gases y Espectrometría de Masas , Canadá
8.
Environ Sci Technol ; 56(17): 11983-11990, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35951418

RESUMEN

The assessment of long-range transport potential (LRTP) is enshrined in several frameworks for chemical regulation such as the Stockholm Convention. Screening for LRTP is commonly done with the OECD Pov and LRTP Screening Tool employing two metrics, characteristic travel distance (CTD) and transfer efficiency (TE). Here we introduce a set of three alternative metrics and implement them in the Tool's model. Each metric is expressed as a fraction of the emissions in a source region. The three metrics quantify the extent to which the chemical (i) reaches a remote region (dispersion, ϕ1), (ii) is transferred to surface media in the remote region (transfer, ϕ2), and (iii) accumulates in these surface media (accumulation, ϕ3). In contrast to CTD and TE, the emissions fractions metrics can integrate transport via water and air, enabling comprehensive LRTP assessment. Furthermore, since there is a coherent relationship between the three metrics, the new approach provides quantitative mechanistic insight into different phenomena determining LRTP. Finally, the accumulation metric, ϕ3, allows assessment of LRTP in the context of the Stockholm Convention, where the ability of a chemical to elicit adverse effects in surface media is decisive. We conclude that the emission fractions approach has the potential to reduce the risk of false positives/negatives in LRTP assessments.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Contaminantes Ambientales/análisis , Compuestos Orgánicos , Agua
9.
Environ Int ; 167: 107436, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914338

RESUMEN

Analysis of untreated municipal wastewater is recognized as an innovative approach to assess population exposure to or consumption of various substances. Currently, there are no published wastewater-based studies investigating the relationships between catchment social, demographic, and economic characteristics with chemicals using advanced non-targeted techniques. In this study, fifteen wastewater samples covering 27% of the Australian population were collected during a population Census. The samples were analysed with a workflow employing liquid chromatography high-resolution mass spectrometry and chemometric tools for non-target analysis. Socioeconomic characteristics of catchment areas were generated using Geospatial Information Systems software. Potential correlations were explored between pseudo-mass loads of the identified compounds and socioeconomic and demographic descriptors of the wastewater catchments derived from Census data. Markers of public health (e.g., cardiac arrhythmia, cardiovascular disease, anxiety disorder and type 2 diabetes) were identified in the wastewater samples by the proposed workflow. They were positively correlated with descriptors of disadvantage in education, occupation, marital status and income, and negatively correlated with descriptors of advantage in education and occupation. In addition, markers of polypropylene glycol (PPG) and polyethylene glycol (PEG) related compounds were positively correlated with housing and occupation disadvantage. High positive correlations were found between separated and divorced people and specific drugs used to treat cardiac arrhythmia, cardiovascular disease, and depression. Our robust non-targeted methodology in combination with Census data can identify relationships between biomarkers of public health, human behaviour and lifestyle and socio-demographics of whole populations. Furthermore, it can identify specific areas and socioeconomic groups that may need more assistance than others for public health issues. This approach complements important public health information and enables large-scale national coverage with a relatively small number of samples.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Australia , Enfermedades Cardiovasculares/epidemiología , Humanos , Salud Pública , Clase Social , Factores Socioeconómicos , Aguas Residuales/química
10.
Sci Total Environ ; 848: 157124, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792263

RESUMEN

Micropollutants (MPs) in wastewater pose a growing concern for their potential adverse effects on the receiving aquatic environment, and some countries have started requiring that wastewater treatment plants remove them to a certain extent. Broad spectrum advanced treatment processes, such as ozonation, activated carbon or their combination, are expected to yield a significant reduction in the toxicity of effluents. Here we quantify the reduction of effluent toxicity potentially achieved by implementing these advanced treatment solutions in a selection of European wastewater treatment plants. To this end, we refer to a list of "total pollution proxy substances" (TPPS) composed of 1337 chemicals commonly found in wastewater effluents according to a compilation of datasets of measured concentrations. We consider these substances as an approximation of the "chemical universe" impinging on the European wastewater system. We evaluate the fate of the TPPS in conventional and advanced treatment plants using a compilation of experimental physicochemical properties that describe their sorption, volatilization and biodegradation during activated sludge treatment, as well as known removal efficiency in ozonation and activated carbon treatment, while filling the gaps through in silico prediction models. We estimate that the discharge of micropollutants with wastewater effluents in the European Union has a cumulative MP toxicity to the environment equal to the discharge of untreated wastewater of ca. 160 million population equivalents (PE), i.e. about 30 % of the generated wastewater in the EU. If all plants above a capacity of 100,000 PE were equipped with advanced treatment, we show that this load would be reduced to about 95 million PE. In addition, implementing advanced treatment in wastewater plants above 10,000 PE discharging to water bodies with an average dilution ratio smaller than 10 would yield a widespread improvement in terms of exposure of freshwater ecosystems to micropollutants, almost halving the part of the stream network exposed to the highest toxic risks. Our analysis provides background for a cost-effectiveness appraisal of advanced treatment "at the end of the pipe", which could lead to optimized interventions. This should not be regarded as a stand-alone solution, but as a complement to policies for the control of emissions at the source for the most problematic MPs.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Carbón Orgánico/química , Ecosistema , Ozono/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales/química , Agua/análisis , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 56(10): 6305-6314, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35467837

RESUMEN

Bioconcentration factors (BCFs) in rainbow trout were measured for 10 anionic surfactants with a range of alkyl chain lengths and different polar head groups. The BCFs ranged from 0.04 L kg-1 ww (for C10SO3) to 1370 L kg-1 ww (C16SO3). There was a strong correlation between the log BCF and log membrane lipid-water distribution ratio (DMLW, r2 = 0.96), and biotransformation was identified as the dominant elimination mechanism. The strong positive influence of DMLW on BCF was attributed to two phenomena: (i) increased partitioning from water into the epithelial membrane of the gill, leading to more rapid diffusion across this barrier and more rapid uptake, and (ii) increased sequestration of the surfactant body burden into membranes and other body tissues, resulting in lower freely dissolved concentrations available for biotransformation. Estimated whole-body in vivo biotransformation rate constants kB-BCF are within a factor three of rate constants estimated from S9 in vitro assays for six of the eight test chemicals for which kB-BCF could be determined. A model-based assessment indicated that the hepatic clearance rate of freely dissolved chemicals was similar for the studied surfactants. The dataset will be useful for evaluation of in silico and in vitro methods to assess bioaccumulation.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Biotransformación , Oncorhynchus mykiss/metabolismo , Tensoactivos/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
12.
Chemosphere ; 293: 133657, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35051516

RESUMEN

Wastewater treatment plants (WWTPs) are known to be significant sources of per- and polyfluoroalkyl substances (PFAS) to the environment. In this study, PFAS were measured in the influent of 76 municipal wastewater treatment plants (WWTPs) serving approximately 53% of the Australian population. Of fourteen target PFAS, twelve analytes including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four C4-10 perfluoroalkyl sulfonic acids (PFSAs) and two fluorotelomer sulfonates (6:2 and 8:2 FTS) were detected. Of these, PFOS, PFHxS and PFHxA had the highest median concentrations. The per capita background release of Σ12 PFAS to WWTP influent in Australia was estimated to be 8.1-24 µg/d/per person. The background release was supplemented by contributions from catchment specific point sources (i.e., industry, airports, military bases, and landfills), whereby the number of industrial sites positively correlated with the per capita mass load of Σ12 PFAS (r = 0.5-0.63, p < 0.01). The per capita mass loads were extrapolated to the entire Australian population, with estimates suggesting that approximately 1 kg/d of Σ12 PFAS reach WWTPs in Australia (300-400 kg annually), with more than half of the PFAS (∼59%) attributed to background release and the remaining (∼41%) to catchment specific point sources. These data provide insight into the release of major PFAS to wastewater at a national scale in Australia.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Australia , Fluorocarburos/análisis , Humanos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
13.
Environ Sci Process Impacts ; 23(12): 1930-1948, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34787154

RESUMEN

Fish bioconcentration factors (BCFs) are commonly used in chemical hazard and risk assessment. For neutral organic chemicals BCFs are positively correlated with the octanol-water partition ratio (KOW), but KOW is not a reliable parameter for surfactants. Membrane lipid-water distribution ratios (DMLW) can be accurately measured for all kinds of surfactants, using phospholipid-based sorbents. This study first demonstrates that DMLW values for ionic surfactants are more than 100 000 times higher than the partition ratio to fish-oil, representing neutral storage lipid. A non-ionic alcohol ethoxylate surfactant showed almost equal affinity for both lipid types. Accordingly, a baseline screening BCF value for surfactants (BCFbaseline) can be approximated for ionic surfactants by multiplying DMLW by the phospholipid fraction in tissue, and for non-ionic surfactants by multiplying DMLW by the total lipid fraction. We measured DMLW values for surfactant structures, including linear and branched alkylbenzenesulfonates, an alkylsulfoacetate and an alkylethersulfate, bis(2-ethylhexyl)-surfactants (e.g., docusate), zwitterionic alkylbetaines and alkylamine-oxides, and a polyprotic diamine. Together with sixty previously published DMLW values for surfactants, structure-activity relationships were derived to elucidate the influence of surfactant specific molecular features on DMLW. For 23 surfactant types, we established the alkyl chain length at which BCFbaseline would exceed the EU REACH bioaccumulation (B) threshold of 2000 L kg-1, and would therefore require higher tier assessments to further refine the BCF estimate. Finally, the derived BCFbaseline are compared with measured literature in vivo BCF data where available, suggesting that refinements, most notably reliable estimates of biotransformation rates, are needed for most surfactant types.


Asunto(s)
Tensoactivos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Peces , Fosfolípidos , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Technol ; 55(21): 14607-14616, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34664504

RESUMEN

Measurements of chemical persistence in natural environments can provide insight into behavior not easily replicated in laboratory studies. However, it is difficult to find environmental situations suitable for such measurements, particularly for substances with half-lives exceeding several weeks. The objective of this study was to demonstrate that a strategic postflood monitoring campaign can be used to quantify transformation half-lives on the scale of months in a real aquatic system. Water samples were collected in the upper Brisbane River estuary on 36 occasions over 37 weeks and analyzed for 127 pharmaceuticals and personal care products (PPCPs), pesticides, and perfluoroalkyl substances (PFASs). High quality time trend data were obtained for 41 substances. For many of these, data on the input of a wastewater treatment plant to the upper estuary were also obtained. A mass balance model of the estuary stretch was formulated and parametrized using PFASs as persistent benchmarking chemicals. Transformation half-life estimates were obtained for 10 PPCPs and 7 pesticides ranging from 18 to 260 days. Furthermore, insight was obtained into dominant transformation processes as well as the magnitude of chemical inputs to the estuary and their sources. The approach developed shows that under certain conditions, estuaries can be used to quantify the persistence of organic contaminants with half-lives of the order of several months.


Asunto(s)
Fluorocarburos , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Benchmarking , Monitoreo del Ambiente , Estuarios , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Process Impacts ; 23(8): 1146-1157, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34251377

RESUMEN

Some organic contaminants, including the persistent organic pollutants (POPs), have achieved global distribution through long range atmospheric transport (LRAT). Regulatory efforts, monitoring programs and modelling studies address the LRAT of POPs on national, continental (e.g. Europe) and/or global scales. Whereas national and continental-scale models require estimates of the input of globally dispersed chemicals from outside of the model domain, existing global-scale models either have relatively coarse spatial resolution or are so computationally demanding that it limits their usefulness. Here we introduce the Nested Exposure Model (NEM), which is a multimedia fate and transport model that is global in scale yet can achieve high spatial resolution of a user-defined target region without huge computational demands. Evaluating NEM by comparing model predictions for PCB-153 in air with measurements at nine long-term monitoring sites of the European Monitoring and Evaluation Programme (EMEP) reveals that nested simulations at a resolution of 1°× 1° yield results within a factor of 1.5 of observations at sites in northern Europe. At this resolution, the model attributes more than 90% of the atmospheric burden within any of the grid cells containing an EMEP site to advective atmospheric transport from elsewhere. Deteriorating model performance with decreasing resolution (15°× 15°, 5°× 5° and 1°× 1°), manifested by overestimation of concentrations across most of northern Europe by more than a factor of 3, illustrates the effect of numerical diffusion. Finally, we apply the model to demonstrate how the choice of spatial resolution affect predictions of atmospheric deposition to the Baltic Sea. While we envisage that NEM may be used for a wide range of applications in the future, further evaluation will be required to delineate the boundaries of applicability towards chemicals with divergent fate properties as well as in environmental media other than air.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Ambientales , Contaminantes Ambientales/análisis , Europa (Continente) , Multimedia
16.
ACS ES T Water ; 1(7): 1541-1554, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278380

RESUMEN

Complex microbial communities in environmental systems play a key role in the detoxification of chemical contaminants by transforming them into less active metabolites or by complete mineralization. Biotransformation, i.e., transformation by microbes, is well understood for a number of priority pollutants, but a similar level of understanding is lacking for many emerging contaminants encountered at low concentrations and in complex mixtures across natural and engineered systems. Any advanced approaches aiming to reduce environmental exposure to such contaminants (e.g., novel engineered biological water treatment systems, design of readily degradable chemicals, or improved regulatory assessment strategies to determine contaminant persistence a priori) will depend on understanding the causal links among contaminant removal, the key driving agents of biotransformation at low concentrations (i.e., relevant microbes and their metabolic activities), and how their presence and activity depend on environmental conditions. In this Perspective, we present the current understanding and recent methodological advances that can help to identify such links, even in complex environmental microbiomes and for contaminants present at low concentrations in complex chemical mixtures. We discuss the ensuing insights into contaminant biotransformation across varying environments and conditions and ask how much closer we have come to designing improved approaches to reducing environmental exposure to contaminants.

17.
Environ Sci Process Impacts ; 23(8): 1158-1170, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34259284

RESUMEN

Four crops with different edible plant parts (radish, lettuce, pea and maize) were grown in outdoor lysimeters on soil spiked with 13 perfluorinated alkyl acids (PFAAs) at 4 different levels. PFAA concentrations were measured in soil, soil pore water, and different plant parts at harvest. Edible part/soil concentration factors ranged over seven orders of magnitude and decreased strongly with increasing PFAA chain length, by a factor of 10 for each additional fluorinated carbon (nCF) for pea. Three processes were responsible for most of the variability. The first was sorption to soil; calculating whole plant concentration factors on the basis of concentration in pore water instead of soil reduced the variability from five orders of magnitude to two. Second, the journey of the PFAAs with the transpiration stream to the leaves was hindered by retention in the roots driven by sorption; root retention factors increased by a factor 1.7 for each nCF. Third, transfer of PFAAs from the leaves to the fruit via the phloem flow was also hindered - presumably by sorption; fruit/leaf concentration factors decreased by a factor 2.5 for each nCF. A simple mathematical model based on the above principles described the measured concentrations in roots, leaves, fruits and radish bulbs within a factor 4 in most cases. This indicates that the great diversity in PFAA transfer from soil to crops can be largely described with simple concepts for four markedly different species.


Asunto(s)
Fluorocarburos , Contaminantes del Suelo , Productos Agrícolas , Fluorocarburos/análisis , Lactuca , Suelo , Contaminantes del Suelo/análisis
18.
Environ Sci Technol ; 55(13): 8888-8897, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133133

RESUMEN

Cationic surfactants have a strong affinity to sorb to phospholipid membranes and thus possess an inherent potential to bioaccumulate, but there are few measurements of bioconcentration in fish. We measured the bioconcentration of 10 alkylamines plus two quaternary ammonium compounds in juvenile rainbow trout at pH 7.6, and repeated the measurements at pH 6.2 for 6 of these surfactants. The BCF of the amines with chain lengths ≤ C14 was positively correlated with chain length, increasing ∼0.5 log units per carbon. Their BCF was also pH dependent and approximately proportional to the neutral fraction of the amine in the water. The BCFs of the quaternary ammonium compounds showed no pH dependence and were >2 orders of magnitude less than for amines of the same chain length at pH 7.6. This indicates that systemic uptake of permanently charged cationic surfactants is limited. The behavior of the quaternary ammonium compounds and the two C16 amines studied was consistent with previous observations that these surfactants accumulate primarily to the gills and external surfaces of the fish. At pH 7.6 the BCF exceeded 2000 L kg-1 for 4 amines with chains ≥ C13, showing that bioconcentration can be considerable for some longer chained cationic surfactants.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Branquias , Tensoactivos , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Process Impacts ; 23(5): 689-698, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33725069

RESUMEN

Cedarwood oil is an essential oil used as a fragrance material and insect repellent. Its main constituents are sesquiterpenes which are potentially bioaccumulative according to the REACH screening criteria. Cedarwood oil is a complex mixture of hydrophobic and volatile organic chemicals. The volatility and limited water solubility of its constituents are a challenge for standard bioconcentration factor (BCF) test methods using aqueous exposure. We used an abbreviated dietary exposure in vivo testing protocol with internal benchmark substances as "internal standards" to derive the BCF of cedarwood oil constituents using rainbow trout (Oncorhynchus mykiss). Internal benchmarking proved to be a useful tool to control for inter-individual variability, enabling us to calculate the BCF for all major cedarwood oil constituents as a mixture. We found that the BCF of two out of six analysed cedarwood oil constituents exceed a BCF of 5000 and two others exceed a BCF of 2000 (90% confidence level) even though we found evidence for biotransformation for individual constituents. The results of this study indicate that more work is warranted to study the bioaccumulation of essential oils and highlights the utility of internal benchmarking in in vivo dietary exposure BCF tests to increase robustness and allow for the BCF measurement of complex mixtures.


Asunto(s)
Aceites Volátiles , Oncorhynchus mykiss , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Animales , Bioacumulación
20.
Sci Total Environ ; 754: 142373, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254898

RESUMEN

UV filters present in sunscreen and other cosmetics are directly released into the environment during aquatic recreational activities. The extent to which the wide range of UV filters pose a risk to the environment remains unclear. This study investigated the occurrence and dissipation of selected organic UV filters at a recreational site (Enoggera Reservoir, Queensland, Australia) over 12 h. Furthermore, different possible degradation processes were investigated in a controlled off-site experiment with surface water exposed to natural light. Half-lives were estimated for ten UV filters. In Enoggera Reservoir, seven UV filters were detected, of which the most prevalent were octocrylene, avobenzone (BMDBM) and enzacamene (4-MBC). Summed concentrations of the seven UV filters ranged from 7330 ng L-1 at 13:00 h to 2550 ng L-1 at 21:00 h. In the degradation experiment, four UV filters showed no significant change over time. The fate of these compounds in the environment is likely to be mainly influenced by dispersion. Half-lives of the remaining UV filters were 6.6 h for amiloxate (IMC), 20 h for benzophenone 1, 23 h for octinoxate (EHMC), 30 h for 3-benzylidene camphor, 34 h for 4-MBC and 140 h for dioxybenzone (BP8). The degree of susceptibility to photodegradation and biodegradation was generally consistent within a structural class. The fate and half-lives of UV filters are variable and should be considered on a per site basis when assessing environmental risk.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA