Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
JMIR Res Protoc ; 13: e56772, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39222346

RESUMEN

BACKGROUND: The introduction of complementary foods during the first year of life influences the diversity of the gut microbiome. How this diversity affects immune development and health is unclear. OBJECTIVE: This study evaluates the effect of consuming kumara or kumara with added banana powder (resistant starch) compared to a reference control at 4 months post randomization on the prevalence of respiratory tract infections and the development of the gut microbiome. METHODS: This study is a double-blind, randomized controlled trial of mothers and their 6-month-old infants (up to n=300) who have not yet started solids. Infants are randomized into one of 3 groups: control arm (C), standard kumara intervention (K), and a kumara intervention with added banana powder product (K+) to be consumed daily for 4 months until the infant is approximately 10 months old. Infants are matched for sex using stratified randomization. Data are collected at baseline (prior to commencing solid food) and at 2 and 4 months after commencing solid food (at around 8 and 10 months of age). Data and samples collected at each timepoint include weight and length, intervention adherence (months 2 and 4), illness and medication history, dietary intake (months 2 and 4), sleep (diary and actigraphy), maternal dietary intake, breast milk, feces (baseline and 4 months), and blood samples (baseline and 4 months). RESULTS: The trial was approved by the Health and Disability Ethics Committee of the Ministry of Health, New Zealand (reference 20/NTA/9). Recruitment and data collection did not commence until January 2022 due to the COVID-19 pandemic. Data collection and analyses are expected to conclude in January 2024 and early 2025, respectively. Results are to be published in 2024 and 2025. CONCLUSIONS: The results of this study will help us understand how the introduction of a specific prebiotic complementary food affects the microbiota and relative abundances of the microbial species, the modulation of immune development, and infant health. It will contribute to the expanding body of research that aims to deepen our understanding of the connections between nutrition, gut microbiota, and early-life postnatal health. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12620000026921; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=378654. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/56772.


Asunto(s)
Microbioma Gastrointestinal , Femenino , Humanos , Lactante , Masculino , Método Doble Ciego , Microbioma Gastrointestinal/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales del Lactante/inmunología , Musa , Nueva Zelanda/epidemiología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/epidemiología , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
Front Neurosci ; 18: 1424936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268036

RESUMEN

Background: It is well known that opiates slow gastrointestinal (GI) transit, via suppression of enteric cholinergic neurotransmission throughout the GI tract, particularly the large intestine where constipation is commonly induced. It is not clear whether there is uniform suppression of enteric neurotransmission and colonic motility across the full length of the colon. Here, we investigated whether regional changes in colonic motility occur using the peripherally-restricted mu opioid agonist, loperamide to inhibit colonic motor complexes (CMCs) in isolated mouse colon. Methods: High-resolution video imaging was performed to monitor colonic wall diameter on isolated whole mouse colon. Regional changes in the effects of loperamide on the pattern generator underlying cyclical CMCs and their propagation across the full length of large intestine were determined. Results: The sensitivity of CMCs to loperamide across the length of colon varied significantly. Although there was a dose-dependent inhibition of CMCs with increasing concentrations of loperamide (10 nM - 1 µM), a major observation was that in the mid and distal colon, CMCs were abolished at low doses of loperamide (100 nM), while in the proximal colon, CMCs persisted at the same low concentration, albeit at a significantly slower frequency. Propagation velocity of CMCs was significantly reduced by 46%. The inhibitory effects of loperamide on CMCs were reversed by naloxone (1 µM). Naloxone alone did not change ongoing CMC characteristics. Discussion: The results show pronounced differences in the inhibitory action of loperamide across the length of large intestine. The most potent effect of loperamide to retard colonic transit occurred between the proximal colon and mid/distal regions of colon. One of the possibilities as to why this occurs is because the greatest density of mu opioid receptors are located on interneurons responsible for neuro-neuronal transmission underlying CMCs propagation between the proximal and mid/distal colon. The absence of effect of naloxone alone on CMC characteristics suggest that the mu opioid receptor has little ongoing constitutive activity under our recording conditions.

3.
mSystems ; 9(9): e0057724, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39191378

RESUMEN

The introduction of solid foods to infants, also known as weaning, is a critical point for the development of the complex microbial community inhabiting the human colon, impacting host physiology in infancy and later in life. This research investigated in silico the impact of food-breastmilk combinations on growth and metabolite production by colonic microbes of New Zealand weaning infants using the metagenome-scale metabolic model named Microbial Community. Eighty-nine foods were individually combined with breastmilk, and the 12 combinations with the strongest influence on the microbial production of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs) were identified. Fiber-rich and polyphenol-rich foods, like pumpkin and blackcurrant, resulted in the greatest increase in predicted fluxes of total SCFAs and individual fluxes of propionate and acetate when combined, respectively, with breastmilk. Identified foods were further combined with other foods and breastmilk, resulting in 66 multiple food-breastmilk combinations. These combinations altered in silico the impact of individual foods on the microbial production of SCFAs and BCFAs, suggesting that the interaction between the dietary compounds composing a meal is the key factor influencing colonic microbes. Blackcurrant combined with other foods and breastmilk promoted the greatest increase in the production of acetate and total SCFAs, while pork combined with other foods and breastmilk decreased the production of total BCFAs.IMPORTANCELittle is known about the influence of complementary foods on the colonic microbiome of weaning infants. Traditional in vitro and in vivo microbiome methods are limited by their resource-consuming concerns. Modeling approaches represent a promising complementary tool to provide insights into the behavior of microbial communities. This study evaluated how foods combined with other foods and human milk affect the production of short-chain fatty acids and branched-chain fatty acids by colonic microbes of weaning infants using a rapid and inexpensive in silico approach. Foods and food combinations identified here are candidates for future experimental investigations, helping to fill a crucial knowledge gap in infant nutrition.


Asunto(s)
Colon , Simulación por Computador , Microbioma Gastrointestinal , Leche Humana , Destete , Humanos , Leche Humana/química , Leche Humana/microbiología , Leche Humana/metabolismo , Microbioma Gastrointestinal/fisiología , Lactante , Colon/microbiología , Colon/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ácidos Grasos Volátiles/análisis
4.
Front Nutr ; 11: 1396549, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183987

RESUMEN

Global food systems are crucial for sustaining life on Earth. Although estimates suggest that the current production system can provide enough food and nutrients for everyone, equitable distribution remains challenging. Understanding global nutrient distribution is vital for addressing disparities and creating effective solutions for the present and future. This study analyzes global nutrient supply changes to address inadequacies in certain populations using the existing DELTA Model®, which uses aggregates of global food production to estimate nutrient adequacy. By examining the 2020 global food commodity and nutrient distribution, we project future food production in 2050 needs to ensure global adequate nutrition. Our findings reveal that while some nutrients appear to be adequately supplied on a global scale, many countries face national insufficiencies (% supply below the population reference intake) in essential vitamins and minerals, such as vitamins A, B12, B2, potassium, and iron. Closing these gaps will require significant increases in nutrient supply. For example, despite global protein supply surpassing basic needs for the 2050 population, significant shortages persist in many countries due to distribution variations. A 1% increase in global protein supply, specifically targeting countries with insufficiencies, could address the observed 2020 gaps. However, without consumption pattern changes, a 26% increase in global protein production is required by 2050 due to population growth. In this study, a methodology was developed, applying multi-decade linear convergence to sufficiency values at the country level. This approach facilitates a more realistic assessment of future needs within global food system models, such as the DELTA Model®, transitioning from idealized production scenarios to realistic projections. In summary, our study emphasizes understanding global nutrient distribution and adjusting minimum global nutrient supply targets to tackle country-level inequality. Incorporating these insights into global food balance models can improve projections and guide policy decisions for sustainable, healthy diets worldwide.

5.
JMIR Res Protoc ; 13: e59227, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207833

RESUMEN

BACKGROUND: Inadequate dietary fiber (DF) intake is associated with several human diseases. Bread is commonly consumed, and its DF content can be increased by incorporating defatted rice bran (DRB). OBJECTIVE: This first human study on DRB-fortified bread primarily aims to assess the effect of DRB-fortified bread on the relative abundance of a composite of key microbial genera and species in fecal samples. Secondary outcomes include clinical (cardiovascular risk profile), patient-reported (daily bread consumption and bowel movement, gut comfort, general well-being, and total DF intake), biological (fecal microbiota gene abundances, and fecal and plasma metabolites), and physiome (whole-gut and regional transit time and gas fermentation profiles) outcomes in healthy adults with low DF intake. METHODS: This is a 2-armed, placebo-controlled, double-blinded, crossover randomized controlled trial. The study duration is 14 weeks: 2 weeks of lead-in, 4 weeks of intervention per phase, 2 weeks of washout, and 2 weeks of follow-up. Overall, 60 healthy adults with low DF intake (<18 g [female individuals] or <22 g [male individuals] per day) were recruited in Christchurch, New Zealand, between June and December 2022. Randomly assigned participants consumed 3 (female individuals) or 4 (male individuals) slices of DRB-fortified bread per day and then placebo bread, and vice versa. The DRB-fortified bread provided 8 g (female individuals) or 10.6 g (male individuals) of total DF, whereas the placebo (a matched commercial white toast bread) provided 2.7 g (female individuals) or 3.6 g (male individuals) of total DF. Before and after each intervention phase, participants provided fecal and blood samples to assess biological responses; completed a 3-day food diary to assess usual intakes and web-based questionnaires to assess gut comfort, general and mental well-being, daily bread intake, and bowel movement via an app; underwent anthropometry and blood pressure measurements; and drank blue food dye to assess whole-gut transit time. Additionally, 25% (15/60) of the participants ingested Atmo gas-sensing capsules to assess colonic gas fermentation profile and whole-gut and regional transit time. Mean differences from baseline will be compared between the DRB and placebo groups, as well as within groups (after the intervention vs baseline). For metabolome analyses, comparisons will be made within and between groups using postintervention values. RESULTS: Preliminary analysis included 56 participants (n=33, 59% female; n=23, 41% male). Due to the large dataset, data analysis was planned to be fully completed by the last quarter of 2024, with full results expected to be published in peer-reviewed journals by the end of 2024. CONCLUSIONS: This first human study offers insights into the prospect of consuming DRB-fortified bread to effectively modulate health-promoting gut microbes, their metabolism, and DF intake in healthy adults with low DF intake. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12622000884707; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=383814. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/59227.


Asunto(s)
Pan , Estudios Cruzados , Fibras de la Dieta , Alimentos Fortificados , Microbioma Gastrointestinal , Oryza , Humanos , Oryza/química , Fibras de la Dieta/administración & dosificación , Fibras de la Dieta/metabolismo , Masculino , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Adulto , Método Doble Ciego , Persona de Mediana Edad , Heces/microbiología , Heces/química
6.
Anim Biotechnol ; 35(1): 2379897, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39102232

RESUMEN

The objectives of this study were to estimate genetic parameters for citric acid content (CA) and lactic acid content (LA) in sheep milk and to identify the associated candidate genes in a New Zealand dairy sheep flock. Records from 165 ewes were used. Heritability estimates based on pedigree records for CA and LA were 0.65 and 0.33, respectively. The genetic and phenotypic correlations between CA and LA were strong-moderate and negative. Estimates of genomic heritability for CA and LA were also high (0.85, 0.51) and the genomic correlation between CA and LA was strongly negative (-0.96 ± 0.11). No significant associations were found at the Bonferroni level. However, one intragenic SNP in C1QTNF1 (chromosome 11) was associated with CA, at the chromosomal significance threshold. Another SNP associated with CA was intergenic (chromosome 15). For LA, the most notable SNP was intragenic in CYTH1 (chromosome 11), the other two SNPs were intragenic in MGAT5B and TIMP2 (chromosome 11), and four SNPs were intergenic (chromosomes 1 and 24). The functions of candidate genes indicate that CA and LA could potentially be used as biomarkers for energy balance and clinical mastitis. Further research is recommended to validate the present results.


Asunto(s)
Ácido Cítrico , Estudio de Asociación del Genoma Completo , Ácido Láctico , Leche , Polimorfismo de Nucleótido Simple , Animales , Leche/química , Femenino , Ovinos/genética , Nueva Zelanda , Polimorfismo de Nucleótido Simple/genética , Ácido Cítrico/análisis , Ácido Láctico/metabolismo
7.
J Nutr ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019158

RESUMEN

BACKGROUND: Absorption of tryptophan (TRP) across the gut epithelium is potentially modulated by competing large neutral amino acids (LNAAs), which could affect the appearance of TRP and its metabolites in the bloodstream. OBJECTIVES: This study aimed to determine, in a growing pig model of an adult human, the absorption of TRP and other LNAAs from the gastrointestinal tract, and plasma appearance of TRP, LNAAs, and TRP metabolites, in response to dietary proteins varying in TRP content. METHODS: Pigs were adapted for 7 d to each of 4 diets that differed in their protein source and TRP content: 1) alpha-lactalbumin (AL; 9.95 mg TRP/g diet DM), 2) whey protein (6.59 mg TRP/g), 3) casein (3.73 mg TRP/g), or 4) zein (0.14 mg TRP/g). On day 8, pigs were euthanised after a 12-h fast (baseline), or 1, 2, 3, 4, or 6 h after they received a test meal consisting of 45 g protein, or a protein-free meal (n = 6 pigs at each time in each meal group). Tryptophan and LNAA absorption from the small intestine, and appearance of TRP, LNAAs, and TRP metabolites (melatonin, serotonin, kynurenine pathway metabolites), in the portal vein and systemic circulation, were determined. RESULTS: AL intake resulted in sustained elevated plasma TRP concentrations after an overnight fast. The amount of TRP absorbed was dose-dependently related to protein TRP content (P = 0.028), with fastest rates for pigs fed AL (371 mg/h). Portal and systemic plasma TRP, TRP/LNAA, and the TRP metabolites were highest (P ≤ 0.05) after AL intake, and remained above baseline levels for ∼4 h postprandially. Absorption rates of TRP correlated with postprandial plasma TRP and TRP metabolites (P ≤ 0.05). CONCLUSIONS: In adult humans, postprandial plasma TRP and TRP metabolite concentrations can likely be modulated by the TRP content of the meal.

8.
Food Funct ; 15(10): 5613-5626, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38722062

RESUMEN

Modification of dairy proteins during processing impacts structural assemblies, influencing textural and nutritional properties of dairy products, and release and availability of amino acids during digestion. By modifying only pH, acid heat-set bovine dairy gels with divergent textural properties were developed to alter protein digestion. In vitro assay confirmed faster digestion of protein from a firm gel (pH 5.65) versus a soft gel (pH 6.55). We hypothesised that firm gel (FIRM-G; pH 5.6) would result in greater indispensable amino acid (IAA) appearance in circulation over 5 h and corresponding differences in gastric myoelectrical activity relative to soft gel (SOFT-G; pH 6.2). In a randomised, single-blind cross-over trial, healthy females (n = 20) consumed 150 g of each gel; plasma amino acid appearance was assessed over 5 hours. Iso-nitrogenous, iso-caloric gels were prepared from identical mixtures of bovine milk and whey protein concentrates; providing 17.7 g (FIRM-G) and 18.9 g (SOFT-G) of protein per serving. Secondary outcomes included gastric myoelectrical activity measured by body surface gastric mapping, glycaemic, triglyceridaemic, and subjective appetite and digestive responses. Overall plasma IAA (area under the curve) did not differ between gels. However, plasma IAA concentrations were higher, and increased more rapidly over time after SOFT-G compared with FIRM-G (1455 ± 53 versus 1350 ± 62 µmol L-1 at 30 min, p = 0.024). Similarly, total, branched-chain and dispensable amino acids were higher at 30 min with SOFT-G than FIRM-G (total: 3939 ± 97 versus 3702 ± 127 µmol L-1, p = 0.014; branched-chain: 677 ± 30 versus 619 ± 34 µmol L-1, p = 0.047; dispensable: 2334 ± 53 versus 2210 ± 76 µmol L-1, p = 0.032). All other measured parameters were similar between gels. Peak postprandial aminoacidaemia was higher and faster following ingestion of SOFT-G. Customised plasma amino acid appearance from dairy is achievable by altering gel coagulum structure using pH during processing and may have minimal influence on related postprandial responses, with implications for targeting food design for optimal health. The Clinical Trial Registry number is ACTRN12622001418763 (https://www.anzctr.org.au) registered November 7, 2022.


Asunto(s)
Aminoácidos , Estudios Cruzados , Geles , Femenino , Humanos , Adulto , Concentración de Iones de Hidrógeno , Aminoácidos/sangre , Aminoácidos/química , Geles/química , Animales , Adulto Joven , Bovinos , Digestión , Calor , Proteínas de la Leche/química , Método Simple Ciego , Estómago/fisiología , Estómago/química , Leche/química
9.
J Nutr ; 154(7): 2097-2107, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703889

RESUMEN

BACKGROUND: Bovine milk processing influences the structure of the curd formed during gastric digestion, which may alter gastric protein hydrolysis and impact amino acid (AA) release into the small intestine. OBJECTIVES: This study aimed to determine the influence of heat treatment and homogenization on the gastric protein digestion and AA emptying of bovine milk. METHODS: Nine-wk-old pigs (n = 144) consumed either raw, pasteurized nonhomogenized (PNH), pasteurized homogenized (PH), or ultra-high-temperature homogenized (UHT) bovine milk for 10 d. On day 11, fasted pigs received the milk treatment (500 mL) before gastric contents were collected at 0, 20, 60, 120, 180, and 300 min postprandially. The apparent degree of gastric protein hydrolysis (based on the release of free amino groups), apparent gastric disappearance of individual proteins [based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel band intensity], and the gastric emptying of digested protein and AA were determined. RESULTS: During the first 60 min, the rate of apparent gastric protein hydrolysis was fastest in pigs fed UHT milk (0.29%/min compared with on average 0.07%/min in pigs fed raw, PNH, and PH milk). Differences in the apparent degree of gastric protein hydrolysis and emptying were reflected in the rate of digested protein entering the small intestine. The AA gastric emptying half-time was generally shorter in pigs fed PH and UHT milk than in pigs fed raw and PNH milk. For example, the gastric release of total essential AA was >2-fold faster (P < 0.01) in pigs fed PH or UHT milk than that in pigs fed raw or PNH milk (i.e., homogenized compared with nonhomogenized milk). CONCLUSIONS: Heat treatment and homogenization increased the apparent gastric degree of protein hydrolysis and the release of digested protein into the small intestine. However, the rate of AA entering the small intestine was mainly increased by homogenization.


Asunto(s)
Digestión , Vaciamiento Gástrico , Calor , Proteínas de la Leche , Animales , Digestión/fisiología , Porcinos , Proteínas de la Leche/metabolismo , Proteínas de la Leche/química , Humanos , Bovinos , Manipulación de Alimentos/métodos , Aminoácidos/metabolismo , Leche/química , Hidrólisis , Pasteurización
10.
Foods ; 13(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731774

RESUMEN

The global dairy market has been increasingly diversified with more dairy product offerings of milk products from different animal species. Meanwhile, milk powders remain the main exported dairy product format due to their ease of transportation. In this work, we studied the structural changes, protein hydrolysis and nutrient delivery during dynamic gastric digestion and small intestinal digestion of cow, goat and sheep milk reconstituted from commercial whole milk powders. The results show that the reconstituted milks digest similarly to processed fresh milk. The digestion behaviors of the three reconstituted ruminant milks are broadly similar (gastric coagulation, kinetics of gastric emptying of protein and fat and the high digestibility in the small intestine) with some differences, which are likely contributed by the processing history of the milk powders. The delivery of individual amino acids to the small intestine differed between the early and late stages of gastric digestion, which were primarily affected by the abundance of amino acids in caseins and whey proteins but also by the difference between milk types associated with their gastric coagulation behaviors. This work showed that powdered milk is similar to fresh processed milk in digestion behavior, and the inherent differences between ruminant milks can be modified by processing treatments.

11.
Nutrients ; 16(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38674790

RESUMEN

Kiwifruit (KF) has shown neuroprotective potential in cell-based and rodent models by augmenting the capacity of endogenous antioxidant systems. This study aimed to determine whether KF consumption modulates the antioxidant capacity of plasma and brain tissue in growing pigs. Eighteen male pigs were divided equally into three groups: (1) bread, (2) bread + Actinidia deliciosa cv. 'Hayward' (green-fleshed), and (3) bread + A. chinensis cv. 'Hort16A' (yellow-fleshed). Following consumption of the diets for eight days, plasma and brain tissue (brain stem, corpus striatum, hippocampus, and prefrontal cortex) were collected and measured for biomarkers of antioxidant capacity, enzyme activity, and protein expression assessments. Green KF significantly increased ferric-reducing antioxidant potential (FRAP) in plasma and all brain regions compared with the bread-only diet. Gold KF increased plasma ascorbate concentration and trended towards reducing acetylcholinesterase activity in the brain compared with the bread-only diet. Pearson correlation analysis revealed a significant positive correlation between FRAP in the brain stem, prefrontal cortex, and hippocampus with the total polyphenol concentration of dietary interventions. These findings provide exploratory evidence for the benefits of KF constituents in augmenting the brain's antioxidant capacity that may support neurological homeostasis during oxidative stress.


Asunto(s)
Actinidia , Antioxidantes , Frutas , Fármacos Neuroprotectores , Animales , Actinidia/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Masculino , Frutas/química , Fármacos Neuroprotectores/farmacología , Porcinos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Dieta , Pan , Polifenoles/farmacología , Modelos Animales , Ácido Ascórbico/farmacología
12.
Am J Clin Nutr ; 119(5): 1200-1215, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452857

RESUMEN

BACKGROUND: Heat treatments of dairy, including pasteurization and ultra-high temperature (UHT) processing, alter milk macromolecular structures, and ultimately affect digestion. In vitro, animal, and human studies show faster nutrient release or circulating appearance after consuming UHT milk (UHT-M) compared with pasteurized milk (PAST-M), with a faster gastric emptying (GE) rate proposed as a possible mechanism. OBJECTIVES: To investigate the impact of milk heat treatment on GE as a mechanism of faster nutrient appearance in blood. We hypothesized that GE and circulating nutrient delivery following consumption would be faster for UHT-M than PAST-M. METHODS: In this double-blind randomized controlled cross-over trial, healthy female (n = 20; 27.3 ± 1.4 y, mean ± SD) habitual dairy consumers, consumed 500 mL of either homogenized bovine UHT-M or PAST-M (1340 compared with 1320 kJ). Gastric content volume (GCV) emptying half-time (T50) was assessed over 3 h by magnetic resonance imaging subjective digestive symptoms, plasma amino acid, lipid and B vitamin concentrations, and gastric myoelectrical activity were measured over 5 h. RESULTS: Although GCV T50 did not differ (102 ± 7 min compared with 89 ± 8 min, mean ± SEM, UHT-M and PAST-M, respectively; P = 0.051), GCV time to emptying 25% of the volume was 31% longer following UHT-M compared with PAST-M (42 ± 2 compared with 32 ± 4 min, P = 0.004). Although GCV remained larger for a longer duration following UHT-M (treatment × time interaction, P = 0.002), plasma essential amino acid AUC was greater following UHT-M than PAST-M (55,324 ± 3809 compared with 36,598 ± 5673 µmol·min·L-1, P = 0.006). Heat treatment did not impact gastric myoelectrical activity, plasma appetite hormone markers or subjective appetite scores. CONCLUSIONS: Contrary to expectations, GE was slower with UHT-M, yet, as anticipated, aminoacidemia was greater. The larger GCV following UHT-M suggests that gastric volume may poorly predict circulating nutrient appearance from complex food matrices. Dairy heat treatment may be an effective tool to modify nutrient release by impacting digestion kinetics. CLINICAL TRIAL REGISTRY: www.anzctr.org.au (ACTRN12620000172909).


Asunto(s)
Estudios Cruzados , Vaciamiento Gástrico , Calor , Leche , Pasteurización , Femenino , Animales , Humanos , Leche/química , Adulto , Bovinos , Método Doble Ciego , Nutrientes , Adulto Joven
13.
J Nutr ; 154(4): 1461-1471, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38432560

RESUMEN

BACKGROUND: An in vivo/in vitro ileal fermentation assay using growing pigs has been developed but not yet formally validated. OBJECTIVES: This study aimed to validate the in vivo/in vitro ileal fermentation assay by comparing in vitro fermentation values with those obtained in vivo in growing pigs. The effect of raising pigs under different environmental conditions was also investigated. METHODS: Thirty piglets (1.59 ± 0.31 kg body weight, mean ± standard deviation) were subjected to 1 of 3 treatments: artificially reared (AR) (nonfarm, laboratory housing conditions) from postnatal day (PND) 7 (AR group), inoculated orally with human infant fecal extracts from birth until PND 8 and AR (AR+ group), or conventionally reared on a farm (control group). Starting at PND 7, the AR and AR+ pigs received human infant formula for 3 wk, followed by a human-type diet for 5 wk. Control pigs were weaned on the farm and, on PND 63, relocated to the laboratory animal facility. From PND 63, all pigs received a human-type diet. On PND 78, pigs were killed, after which ileal digesta were collected to perform an in vitro ileal fermentation (in vitro organic matter [OM] fermentability and organic acid production) and to determine digesta microbial composition and dietary OM fermentability in vivo. RESULTS: The rearing regimen resulted in only a few differences in ileal microbial taxonomic composition. The rearing regimen generally did not affect the in vitro production of individual organic acids. The in vivo and in vitro OM fermentability of proximal ileal digesta (19.7 ± 2.04%; mean ± SEM) was similar (P > 0.05) for the AR and control pigs but not for the AR+ pigs. CONCLUSIONS: The control-rearing regimen was preferred over AR or AR+ because of ease of implementation. The in vitro ileal fermentation assay accurately predicted the in vivo OM fermentability.


Asunto(s)
Dieta , Íleon , Humanos , Porcinos , Animales , Fermentación , Íleon/metabolismo , Heces , Dieta/veterinaria , Proyectos de Investigación , Alimentación Animal/análisis , Digestión
14.
J Nutr ; 154(2): 300-313, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38000662

RESUMEN

Although a diet high in plant foods can provide beneficial nutritional outcomes, unbalanced and restrictive plant-based diets may cause nutrient deficiencies. Protein intake from these diets is widely discussed, but the comparison of animal and plant proteins often disregards amino acid composition and digestibility as measurements of protein quality. Poor provision of high-quality protein may result in adverse outcomes, especially for individuals with increased nutrient requirements. Several dietary modeling studies have examined protein adequacy when animal-sourced proteins are replaced with traditional and novel plant proteins, but no review consolidating these findings are available. This narrative review aimed to summarize the approaches of modeling studies for protein intake and protein quality when animal-sourced proteins are replaced with plant foods in diet simulations and examine how these factors vary across age groups. A total of 23 studies using dietary models to predict protein contribution from plant proteins were consolidated and categorized into the following themes-protein intake, protein quality, novel plant-based alternatives, and plant-based diets in special populations. Protein intake from plant-based diet simulations was lower than from diets with animal-sourced foods but met country-specific nutrient requirements. However, protein adequacy from some plant-sourced foods were not met for simulated diets of children and older adults. Reduced amino acid adequacy was observed with increasing intake of plant foods in some scenarios. Protein adequacy was generally dependent on the choice of substitution with legumes, nuts, and seeds providing greater protein intake and quality than cereals. Complete replacement of animal to plant-sourced foods reduced protein adequacy when compared with baseline diets and partial replacements.


Asunto(s)
Dieta , Proteínas en la Dieta , Niño , Animales , Humanos , Anciano , Proteínas de Plantas , Necesidades Nutricionales , Aminoácidos
15.
Front Nutr ; 10: 1242301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823089

RESUMEN

Ruminants' milk is commonly used for supplying nutrients to infants when breast milk is unavailable or limited. Previous studies have highlighted the differences between ruminants' milk composition, digestion, absorption, and fermentation. However, whether consuming different ruminants' milk impact the appearance of the circulatory blood metabolites in the early postnatal life is not well understood. The analysis conducted here aimed to determine the effect of feeding exclusively whole milk from bovine, caprine or ovine species to pigs, approximately 7 days-old for 15 days, on circulatory blood plasma metabolites. Relative intensities of plasma metabolites were detected using a liquid chromatography-mass spectrometry based metabolomic approach. Seven polar and 83 non-polar (lipids) metabolites in plasma were significantly different (false discovery rate < 0.05) between milk treatments. These included polar metabolites involved in amino acid metabolism and lipids belonging to phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, and triglycerides. Compared to the caprine or bovine milk group, the relative intensities of polar metabolites and unsaturated triglycerides were higher in the peripheral circulation of the ovine milk group. In contrast, relative intensities of saturated triglycerides and phosphatidylcholine were higher in the bovine milk group compared to the ovine or caprine milk group. In addition, correlations were identified between amino acid and lipid intake and their appearance in peripheral blood circulation. The results highlighted that consuming different ruminants' milk influences the plasma appearance of metabolites, especially lipids, that may contribute to early postnatal life development in pigs.

16.
Foods ; 12(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37761220

RESUMEN

This study investigated whether heat treatments (raw, 63 °C for 30 min, and 85 °C for 5 min) affect protein hydrolysis by endogenous enzymes in the milk of ruminants (bovine, ovine, and caprine) using a self-digestion model. Self-digestion consisted of the incubation for six hours at 37 °C of the ruminants' milk. Free amino group concentration was measured by the o-phthaldialdehyde method, and peptide sequences were identified by chromatography-mass spectrometry. Results showed that heat treatments prior to self-digestion decreased the free NH2 by 59% in bovine milk heated at 85 °C/5 min, and by 44 and 53% in caprine milk heated at 63 °C/30 min and 85 °C/5 min, respectively. However, after self-digestion, only new free amino groups were observed for the raw and heated at 63 °C/30 min milk. ß-Casein was the most cleaved protein in the raw and heated at 63 °C/30 min bovine milk. A similar trend was observed in raw ovine and caprine milk. Self-digestion increased 6.8-fold the potential antithrombin peptides in the bovine milk heated at 63 °C/30 min. Enhancing bioactive peptide abundance through self-digestion has potential applications in the industry for functional products. Overall, heat treatments affected the free amino groups according to the species and heat treatment applied, which was reflected in the varying degrees of cleaved peptide bonds and peptides released during self-digestion.

17.
Front Nutr ; 10: 1226638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731403

RESUMEN

Background: The rate of stomach emptying of milk from different ruminant species differs, suggesting that the small intestinal digestibility of nutrients could also differ across these milk types. Objective: To determine the small intestinal amino acid (AA) digestibility of raw bovine, caprine, and ovine milk in the piglet as an animal model for the infant. Methods: Seven-day-old piglets (n = 12) consumed either bovine, caprine, or ovine milk diets for 15 days (n = 4 piglets/milk). On day 15, fasted piglets received a single meal of fresh raw milk normalized for protein content and containing the indigestible marker titanium dioxide. Entire gastrointestinal tract contents were collected at 210 min postprandially. Apparent AA digestibility (disappearance) in different regions of the small intestine was determined. Results: On average, 35% of the dietary AAs were apparently taken up in the small intestine during the first 210 min post-feeding, with 67% of the AA digestibility occurring in the first quarter (p ≤ 0.05) and 33% in the subsequent two quarters. Overall, except for isoleucine, valine, phenylalanine, and tyrosine, the small intestinal apparent digestibility of all AAs at 210 min postprandially in piglets fed ovine milk was, on average, 29% higher (p ≤ 0.05) than for those fed bovine milk. Except for lysine, there was no difference in the apparent digestibility (p > 0.05) of any AAs between piglets fed caprine milk or ovine milk. The apparent digestibility of alanine was higher (p ≤ 0.05) in piglets fed caprine milk than those fed bovine milk. When apparent digestibility was corrected for gastric AA retention, only small differences in the small intestinal apparent digestibility of AAs were observed across milk types. Conclusion: Bovine, caprine and ovine milk had different apparent small intestinal AA digestibility at 210 min postprandially. When corrected for gastric AA retention, the differences in apparent digestibility across species largely disappeared. The apparent AA digestibility differed across small intestinal locations.

18.
J Agric Food Chem ; 71(33): 12487-12496, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37578464

RESUMEN

Quercetin, a polyphenol antioxidant, is widely distributed in food in the form of glycoside rutin, which is not readily absorbed in the gastrointestinal tract. The microbiota of the colon is known to biotransform rutin, generating quercetin aglycones that can be absorbed. We investigated the role of the ileal and colonic microbiota in rutin biotransformation using established in vitro fermentation models. Overall, a higher rate of rutin biotransformation was observed during colonic fermentation compared with ileal fermentation. The colonic microbiome showed higher potential for rutin conversion to quercetin through an increased abundance of α-rhamnosidase- and ß-glucosidase-encoding genes compared to the ileal microbiome. Nonetheless, rutin metabolism occurred rapidly during ileal fermentation (∼20% rutin disappearance after 1 h). The appearance of quercetin varied depending on the ileal inoculum and correlated with an increased abundance of Firmicutes, suggesting that quercetin absorption could be improved via modulation of the ileal microbiota.


Asunto(s)
Quercetina , Rutina , Porcinos , Animales , Rutina/metabolismo , Quercetina/metabolismo , Fermentación , Colon/metabolismo , Biotransformación
19.
Food Chem ; 429: 136979, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506658

RESUMEN

This study investigated the effect of heating (63°C/30 min or 75°C/15 s) and drying (spray-drying or freeze-drying) on plasmin, cathepsin D, and elastase activities in bovine, ovine, and caprine milk, compared to non-dried raw milk counterparts. Protease activities and protein hydrolysis were assessed before and after in vitro infant digestion with or without gastric and pancreatic enzymes. At 75°C/15 s, plasmin activity in caprine and ovine milk decreased (69-75%, p<0.05), while cathepsin D activity in spray-dried bovine milk heated increased (2.8-fold, p<0.05). Plasmin and cathepsin D activities increased (<1.2-fold, p<0.05) after in vitro digestion with pancreatin, regardless of milk species. Endogenous milk enzymes hydrolyzed more proteins than gastric enzymes during gastric digestion and contributed to small intestinal digestion. In summary, milk proteases remained active after processing with effects dependent on the species of milk, and they contributed to in vitro protein hydrolysis in the stomach and small intestine.


Asunto(s)
Digestión , Humanos , Lactante , Animales , Ovinos , Cabras , Leche/química , Leche/metabolismo , Rumiantes/metabolismo , Proteínas de la Leche/metabolismo , Proteolisis , Calor , Catepsina D/metabolismo
20.
Tissue Barriers ; : 2222632, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37340938

RESUMEN

Intestinal organoid technology has revolutionized our approach to in vitro cell culture due in part to their three-dimensional structures being more like the native tissue from which they were derived with respect to cellular composition and architecture. For this reason, organoids are becoming the new gold standard for undertaking intestinal epithelial cell research. Unfortunately, their otherwise advantageous three-dimensional geometry prevents easy access to the apical epithelium, which is a major limitation when studying interactions between dietary or microbial components and host tissues. To overcome this problem, we developed porcine colonoid-derived monolayers cultured on both permeable Transwell inserts and tissue culture treated polystyrene plates. We found that seeding density and culture format altered the expression of genes encoding markers of specific cell types (stem cells, colonocytes, goblets, and enteroendocrine cells), and barrier maturation (tight junctions). Additionally, we found that changes to the formulation of the culture medium altered the cellular composition of colonoids and of monolayers derived from them, resulting in cultures with an increasingly differentiated phenotype that was similar to that of their tissue of origin.


In vitro models of the intestine are used to study the complex in vivo intestinal processes in a simplified context. As such, these models need to be representative of their tissue of origin. Here, we demonstrate that porcine colonoids and colonoid-derived monolayers that have comparable stem cells and differentiated cell types to those of the native tissue can be developed but are influenced by cell seeding density, culture format, and medium formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA