Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Evodevo ; 15(1): 2, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326924

RESUMEN

BACKGROUND: The hyolaryngeal apparatus generates biosonar pulses in the laryngeally echolocating bats. The cartilage and muscles comprising the hyolarynx of laryngeally echolocating bats are morphologically modified compared to those of non-bat mammals, as represented by the hypertrophied intrinsic laryngeal muscle. Despite its crucial contribution to laryngeal echolocation, how the development of the hyolarynx in bats differs from that of other mammals is poorly documented. The genus Rhinolophus is one of the most sophisticated laryngeal echolocators, with the highest pulse frequency in bats. The present study provides the first detailed description of the three-dimensional anatomy and development of the skeleton, cartilage, muscle, and innervation patterns of the hyolaryngeal apparatus in two species of rhinolophid bats using micro-computed tomography images and serial tissue sections and compares them with those of laboratory mice. Furthermore, we measured the peak frequency of the echolocation pulse in active juvenile and adult individuals to correspond to echolocation pulses with hyolaryngeal morphology at each postnatal stage. RESULTS: We found that the sagittal crests of the cricoid cartilage separated the dorsal cricoarytenoid muscle in horseshoe bats, indicating that this unique morphology may be required to reinforce the repeated closure movement of the glottis during biosonar pulse emission. We also found that the cricothyroid muscle is ventrally hypertrophied throughout ontogeny, and that the cranial laryngeal nerve has a novel branch supplying the hypertrophied region of this muscle. Our bioacoustic analyses revealed that the peak frequency shows negative allometry against skull growth, and that the volumetric growth of all laryngeal cartilages is correlated with the pulse peak frequency. CONCLUSIONS: The unique patterns of muscle and innervation revealed in this study appear to have been obtained concomitantly with the acquisition of tracheal chambers in rhinolophids and hipposiderids, improving sound intensity during laryngeal echolocation. In addition, significant protrusion of the sagittal crest of the cricoid cartilage and the separated dorsal cricoarytenoid muscle may contribute to the sophisticated biosonar in this laryngeally echolocating lineage. Furthermore, our bioacoustic data suggested that the mineralization of these cartilages underpins the ontogeny of echolocation pulse generation. The results of the present study provide crucial insights into how the anatomy and development of the hyolaryngeal apparatus shape the acoustic diversity in bats.

2.
J Vet Med Sci ; 85(5): 571-577, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019634

RESUMEN

Bats can be phylogenetically classified into three major groups: pteropodids, rhinolophoids, and yangochiropterans. While rhinolophoids and yangochiropterans are capable of laryngeal echolocation, pteropodids lack this ability. Delicate ear movements are essential for echolocation behavior in bats with laryngeal echolocation. Caudal auricular muscles, especially the cervicoauricularis group, play a critical role in such ear movements. Previously, caudal auricular muscles were studied in three species of bats with laryngeal echolocation, but to our knowledge, there have been no studies on non-laryngeal echolocators, the pteropodids. Here, we describe the gross anatomy of the cervicoauricularis muscles and their innervation in Cynopterus sphinx by using diffusible iodine-based contrast-enhanced computed tomography and 3D reconstructions of immunohistochemically stained serial sections. A previous study on bats with laryngeal echolocation reported that rhinolophoids have four cervicoauricularis muscles and yangochiropterans have three. We observed three cervicoauricularis muscles in the pteropodid C. sphinx. The number of cervicoauricularis muscles and their innervation pattern were comparable to those of non-bat boreoeutherian mammals and yangochiropterans, suggesting that pteropodids, and yangochiropterans maintain the general condition of boreoeutherian mammals and that rhinolophoids have a derived condition. The unique nomenclature had been previously applied to the cervicoauricularis muscles of bats with laryngeal echolocation, but given the commonality between non-bat laurasiatherians and bats, with the exception of rhinolophoids, maintaining the conventional nomenclature (i.e., M. cervicoauricularis superficialis, M. cervicoauricularis medius, and M. cervicoauricularis profundus) is proposed for bats.


Asunto(s)
Quirópteros , Ecolocación , Animales , Ecolocación/fisiología , Músculos
3.
Oral Dis ; 29(4): 1622-1631, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35189017

RESUMEN

OBJECTIVES: The ciliopathies are a wide spectrum of human diseases, which are caused by perturbations in the function of primary cilia. Tooth enamel anomalies are often seen in ciliopathy patients; however, the role of primary cilia in enamel formation remains unclear. MATERIALS AND METHODS: We examined mice with epithelial conditional deletion of the ciliary protein, Ift88, (Ift88fl / fl ;K14Cre). RESULTS: Ift88fl / fl ;K14Cre mice showed premature abrasion in molars. A pattern of enamel rods which is determined at secretory stage, was disorganized in Ift88 mutant molars. Many amelogenesis-related molecules expressing at the secretory stage, including amelogenin and ameloblastin, enamelin, showed significant downregulation in Ift88 mutant molar tooth germs. Shh signaling is essential for amelogenesis, which was found to be downregulated in Ift88 mutant molar at the secretory stage. Application of Shh signaling agonist at the secretory stage partially rescued enamel anomalies in Ift88 mutant mice. CONCLUSION: Findings in the present study indicate that the function of the primary cilia via Ift88 is critical for the secretory stage of amelogenesis through involving Shh signaling.


Asunto(s)
Proteínas del Esmalte Dental , Esmalte Dental , Ratones , Animales , Humanos , Amelogenina/genética , Amelogenina/metabolismo , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Amelogénesis/genética , Proteínas Supresoras de Tumor , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo
4.
Gene Expr Patterns ; 41: 119195, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34126267

RESUMEN

Wnt signaling plays a critical role in the development of many organs, including the major movable craniofacial organs tongue, lip, and eyelid. Four members of the R-spondin family (Rspo1-4) bind to Lgr4/5/6 to regulate the activation of Wnt signaling. However, it is not fully understood how Rspos/Lgrs regulate Wnt signaling during the development of movable craniofacial organs. To address this question, we examined the expression of Rspos, Lgrs, and Axin2 (major mediator of canonical Wnt signaling) during tongue, lip, and eyelid development. The expression of Axin2, Rspos and Lgrs was observed in many similar regions, suggesting that Rspos likely activate canonical Wnt signaling through the Lgr-dependent pathway in these regions. Lgr expression was not detected in regions where Axin2 and Rspos were expressed, suggesting that Rspos might activate canonical Wnt signaling through the Lgr-independent pathway in these regions. In addition, the expression of Rspos and Lgrs were observed in some other regions where Axin2 was not expressed, suggesting the possibility that Rspos and/or Lgrs are involved in non-canonical Wnt signaling or the Wnt-independent pathway. Thus, we identified a dynamic spatiotemporal expression pattern of Rspos and Lgrs during the development of the eyelid, tongue, and lip.


Asunto(s)
Receptores Acoplados a Proteínas G , Trombospondinas , Receptores Acoplados a Proteínas G/genética , Vía de Señalización Wnt
5.
J Anat ; 238(3): 711-719, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33011977

RESUMEN

Mandibular anomalies are often seen in various congenital diseases, indicating that mandibular development is under strict molecular control. Therefore, it is crucial to understand the molecular mechanisms involved in mandibular development. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating the level of gene expression. We found that the mesenchymal conditional deletion of miRNAs arising from a lack of Dicer (an essential molecule for miRNA processing, Dicerfl/fl ;Wnt1Cre), led to an abnormal groove formation at the distal end of developing mandibles. At E10.5, when the region forms, inhibitors of Hh signaling, Ptch1 and Hhip1 showed increased expression at the region in Dicer mutant mandibles, while Gli1 (a major mediator of Hh signaling) was significantly downregulated in mutant mandibles. These suggest that Hh signaling was downregulated at the distal end of Dicer mutant mandibles by increased inhibitors. To understand whether the abnormal groove formation inDicer mutant mandibles was caused by the downregulation of Hh signaling, mice with a mesenchymal deletion of Hh signaling activity arising from a lack of Smo (an essential molecule for Hh signaling activation, Smofl/fl ;Wnt1Cre) were examined. Smofl/fl ;Wnt1Cre mice showed a similar phenotype in the distal region of their mandibles to those in Dicerfl/fl ;Wnt1Cre mice. We also found that approximately 400 miRNAs were expressed in wild-type mandibular mesenchymes at E10.5, and six microRNAs were identified as miRNAs with binding potential against both Ptch1 and Hhip1. Their expressions at the distal end of the mandible were confirmed by in situ hybridization. This indicates that microRNAs regulate the distal part of mandibular formation at an early stage of development by involving Hh signaling activity through controlling its inhibitor expression level.


Asunto(s)
Proteínas Hedgehog/metabolismo , Mandíbula/crecimiento & desarrollo , MicroARNs/metabolismo , Animales , Mandíbula/metabolismo , Ratones , Ratones Transgénicos
6.
Oral Dis ; 26(7): 1513-1522, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32369672

RESUMEN

OBJECTIVE: Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS: To address this question, we examined the mice overexpressing Ikkß (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkß). RESULTS: Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkß mice. Premature abrasion was observed in the molars of K5-Ikkß mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkß mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkß mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkß mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION: Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.


Asunto(s)
Ameloblastos , FN-kappa B , Amelogénesis/genética , Animales , Esmalte Dental , Humanos , Ratones , Diente Molar
7.
J Oral Biosci ; 62(1): 30-35, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31862387

RESUMEN

BACKGROUND: Periodic patterning of iterative structures is diverse across the animal kingdom. Clarifying the molecular mechanisms involved in the formation of these structures helps to elucidate the genetic commonality of developmental processes, as organs with these structures are believed to share the same molecular mechanisms and fundamental processes. Palatal rugae are periodic corrugated structures on the hard palate and are conserved in all mammals. Although the numbers and patterns of the palatal rugae are species specific, they are consistent in each mammalian species, except humans. HIGHLIGHT: Palatal rugae development is thus under strict genetic control in most mammals and is an excellent model to investigate the genetic commonality of developmental processes to form periodic patterning. CONCLUSION: This review highlights the current understanding of the molecular mechanisms of palatal rugae development.


Asunto(s)
Mucosa Bucal , Paladar Duro , Animales , Regulación de la Expresión Génica , Humanos
8.
J Anat ; 236(2): 317-324, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31657471

RESUMEN

The mandible is a crucial organ in both clinical and biological fields due to the high frequency of congenital anomalies and the significant morphological changes during evolution. Primary cilia play a critical role in many biological processes, including the determination of left/right axis patterning, the regulation of signaling pathways, and the formation of bone and cartilage. Perturbations in the function of primary cilia are known to cause a wide spectrum of human diseases: the ciliopathies. Craniofacial dysmorphologies, including mandibular deformity, are often seen in patients with ciliopathies. Mandibular development is characterized by chondrogenesis and osteogenesis; however, the role of primary cilia in mandibular development is not fully understood. To address this question, we generated mice with mesenchymal deletions of the ciliary protein, Ift88 (Ift88fl/fl ;Wnt1Cre). Ift88fl/fl ;Wnt1Cre mice showed ectopic mandibular bone formation, whereas Ift88 mutant mandible was slightly shortened. Meckel's cartilage was modestly expanded in Ift88fl/fl ;Wnt1Cre mice. The downregulation of Hh signaling was found in most of the mesenchyme of Ift88 mutant mandible. However, mice with a mesenchymal deletion of an essential molecule for Hh signaling activity, Smo (Smofl/fl ;Wnt1Cre), showed only ectopic mandibular formation, whereas Smo mutant mandible was significantly shortened. Ift88 is thus involved in chondrogenesis and osteogenesis during mandibular development, partially through regulating Sonic hedgehog (Shh) signaling.


Asunto(s)
Proteínas Hedgehog/genética , Mandíbula/embriología , Organogénesis/genética , Animales , Cartílago/metabolismo , Proliferación Celular , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Osteogénesis/fisiología , Transducción de Señal/fisiología
9.
Gene Expr Patterns ; 34: 119062, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31226309

RESUMEN

Periodic patterning of iterative structures is a fundamental process during embryonic development, since these structures are diverse across the animal kingdom. Therefore, elucidating the molecular mechanisms in the formation of these structures promotes understanding of the process of organogenesis. Periodically patterned ridges, palatal rugae (situated on the hard palate of mammals), are an excellent experimental model to clarify the molecular mechanisms involved in the formation of periodic patterning of iterative structures. Primary cilia are involved in many biological events, including the regulation of signaling pathways such as Shh and non-canonical Wnt signaling. However, the role of primary cilia in the development of palatal rugae remains unclear. We found that primary cilia were localized to the oral cavity side of the interplacode epithelium of the palatal rugae, whereas restricted localization of primary cilia could not be detected in other regions. Next, we generated mice with a placodal conditional deletion of the primary cilia protein Ift88, using ShhCre mice (Ift88 fl/fl;ShhCre). Highly disorganized palatal rugae were observed in Ift88 fl/fl;ShhCre mice. Furthermore, by comparative in situ hybridization analysis, many Shh and non-canonical Wnt signaling-related molecules showed spatiotemporal expression patterns during palatal rugae development, including restricted expression in the epithelium (placodes and interplacodes) and mesenchyme. Some of these expression were found to be altered in Ift88 fl/fl;ShhCre mice. Primary cilia is thus involved in development of palatal rugae.


Asunto(s)
Tipificación del Cuerpo/genética , Cilios/genética , Hueso Paladar/crecimiento & desarrollo , Animales , Cilios/fisiología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Epitelio/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Masculino , Mesodermo/metabolismo , Ratones/embriología , Ratones Endogámicos , Boca , Embarazo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología
10.
Gene Expr Patterns ; 32: 67-71, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980961

RESUMEN

Tooth cusp is a crucial structure, since the shape of the molar tooth is determined by number, shape, and size of the cusp. Bone morphogenetic protein (Bmp) signaling is known to play a critical role in tooth development, including in initiation. However, it remains unclear whether Bmp signaling is also involved in cusp formation. To address this question, we examined cusp in two different transgenic mouse lines: mice with overexpression of Bmp4 (K14-Bmp4), and those with Bmp inhibitor, Noggin, (K14-Noggin) under keratin14 (K14) promoter. K14-Noggin mice demonstrated extra cusps, whereas reduced number of cusps was observed in K14-Bmp4 mice. To further understand how Bmps are expressed during cusp formation, we performed whole-mount in situ hybridisation analysis of three major Bmps (Bmp2, Bmp4, and Bmp7) in murine maxillary and mandibular molars from E14.5 to P3. The linear expressions of Bmp2 and Bmp4 were observed in both maxillary and mandibular molars at E14.5. The expression patterns of Bmp2 and Bmp4 became significantly different between the maxillary and mandibular molars at E16.5. At P3, all Bmps were expressed in all the cusp regions of the maxillary molar; however, the patterns differed. All Bmps thus exhibited dynamic temporo-spatial expression during the cusp formation. It could therefore be inferred that Bmp signaling is involved in regulating cusp formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Diente Molar/embriología , Animales , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Proteínas Portadoras/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hibridación in Situ , Ratones , Ratones Transgénicos , Diente Molar/metabolismo , Odontogénesis , Transducción de Señal/genética , Diente/metabolismo
11.
Arch Oral Biol ; 101: 43-50, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30878609

RESUMEN

OBJECTIVE: The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN: To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS: It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS: Ift88 limits bone formation in the maxillary process by suppressing apoptosis.


Asunto(s)
Apoptosis , Desarrollo Óseo , Cilios , Osteogénesis , Proteínas Supresoras de Tumor/genética , Animales , Eliminación de Gen , Humanos , Maxilar , Ratones , Ratones Noqueados , Hueso Paladar
12.
Dev Dyn ; 248(3): 201-210, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30653268

RESUMEN

BACKGROUND: The timing, location, and level of gene expression are crucial for normal organ development, because morphogenesis requires strict genetic control. MicroRNAs (miRNAs) are noncoding small single-stranded RNAs that play a critical role in regulating gene expression level. Although miRNAs are known to be involved in many biological events, the role of miRNAs in organogenesis is not fully understood. Mammalian eyelids fuse and separate during development and growth. In mice, failure of this process results in the eye-open at birth (EOB) phenotype. RESULTS: It has been shown that conditional deletion of mesenchymal Dicer (an essential protein for miRNA processing; Dicer fl/fl ;Wnt1Cre) leads to the EOB phenotype with full penetrance. Here, we identified that the up-regulation of Wnt signaling resulted in the EOB phenotype in Dicer mutants. Down-regulation of Fgf signaling observed in Dicer mutants was caused by an inverse relationship between Fgf and Wnt signaling. Shh and Bmp signaling were down-regulated as the secondary effects in Dicer fl/fl ;Wnt1Cre mice. Wnt, Shh, and Fgf signaling were also found to mediate the epithelial-mesenchymal interactions in eyelid development. CONCLUSIONS: miRNAs control eyelid development through Wnt. Developmental Dynamics 248:201-210, 2019. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Párpados/crecimiento & desarrollo , MicroARNs/fisiología , Vía de Señalización Wnt , Animales , ARN Helicasas DEAD-box/deficiencia , Regulación del Desarrollo de la Expresión Génica , Ratones , Organogénesis , Fenotipo , Ribonucleasa III/deficiencia
13.
Int J Dent ; 2018: 1601363, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402101

RESUMEN

The tongue is a critical organ, involved in functions such as speaking, swallowing, mastication, and degustation. Although Sox genes are known to play critical roles in many biological processes, including organogenesis, the expression of the Sox family members during tongue development remains unclear. We therefore performed a comparative in situ hybridization analysis of 17 Sox genes (Sox1-14, 17, 18, and 21) during murine tongue development. Sox2, 4, 6, 8, 9, 10, 11, 12, and 21 were found to be expressed in the tongue epithelium, whereas Sox2, 4-6, 8-11, 13, and 21 showed expression in the mesenchyme of the developing tongue. Expression of Sox1, 4, 6, 8-12, and 21 were observed in the developing tongue muscle. Sox5 and 13 showed expression only at E12, while Sox1 expression was observed only on E18. Sox6, 8, 9, and 12 showed expression at several stages. Although the expression of Sox2, 4, 10, 11, and 21 was detected during all the four stages of tongue development, their expression patterns differed among the stages. We thus identified a dynamic spatiotemporal expression pattern of the Sox genes during murine tongue development. To understand whether Sox genes are involved in the development of other craniofacial organs through similar roles to those in tongue development, we also examined the expression of Sox genes in eyelid primordia, which also contain epithelium, mesenchyme, and muscle. However, expression patterns and timing of Sox genes differed between tongue and eyelid development. Sox genes are thus related to organogenesis through different functions in each craniofacial organ.

14.
PLoS One ; 13(9): e0204126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235284

RESUMEN

Periodic patterning of iterative structures is diverse across the animal kingdom. Clarifying the molecular mechanisms involved in the formation of these structure helps to elucidate the process of organogenesis. Turing-type reaction-diffusion mechanisms have been shown to play a critical role in regulating periodic patterning in organogenesis. Palatal rugae are periodically patterned ridges situated on the hard palate of mammals. We have previously shown that the palatal rugae develop by a Turing-type reaction-diffusion mechanism, which is reliant upon Shh (as an inhibitor) and Fgf (as an activator) signaling for appropriate organization of these structures. The disturbance of Shh and Fgf signaling lead to disorganized palatal rugae. However, the mechanism itself is not fully understood. Here we found that Lrp4 (transmembrane protein) was expressed in a complementary pattern to Wise (a secreted BMP antagonist and Wnt modulator) expression in palatal rugae development, representing Lrp4 expression in developing rugae and Wise in the inter-rugal epithelium. Highly disorganized palatal rugae was observed in both Wise and Lrp4 mutant mice, and these mutants also showed the downregulation of Shh signaling, which was accompanied with upregulation of Fgf signaling. Wise and Lrp4 are thus likely to control palatal rugae development by regulating reaction-diffusion mechanisms through Shh and Fgf signaling. We also found that Bmp and Wnt signaling were partially involved in this mechanism.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Paladar Duro/embriología , Paladar Duro/metabolismo , Receptores de LDL/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Difusión , Regulación del Desarrollo de la Expresión Génica , Proteínas Relacionadas con Receptor de LDL , Ratones , Ratones Mutantes , Paladar Duro/patología , Fenotipo , Receptores de LDL/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA