Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 11(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34679554

RESUMEN

The brain tumor is a deadly disease that is caused by the abnormal growth of brain cells, which affects the human blood cells and nerves. Timely and precise detection of brain tumors is an important task to avoid complex and painful treatment procedures, as it can assist doctors in surgical planning. Manual brain tumor detection is a time-consuming activity and highly dependent on the availability of area experts. Therefore, it is a need of the hour to design accurate automated systems for the detection and classification of various types of brain tumors. However, the exact localization and categorization of brain tumors is a challenging job due to extensive variations in their size, position, and structure. To deal with the challenges, we have presented a novel approach, namely, DenseNet-41-based CornerNet framework. The proposed solution comprises three steps. Initially, we develop annotations to locate the exact region of interest. In the second step, a custom CornerNet with DenseNet-41 as a base network is introduced to extract the deep features from the suspected samples. In the last step, the one-stage detector CornerNet is employed to locate and classify several brain tumors. To evaluate the proposed method, we have utilized two databases, namely, the Figshare and Brain MRI datasets, and attained an average accuracy of 98.8% and 98.5%, respectively. Both qualitative and quantitative analysis show that our approach is more proficient and consistent with detecting and classifying various types of brain tumors than other latest techniques.

2.
Sensors (Basel) ; 21(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450729

RESUMEN

Diabetic retinopathy (DR) is an eye disease that alters the blood vessels of a person suffering from diabetes. Diabetic macular edema (DME) occurs when DR affects the macula, which causes fluid accumulation in the macula. Efficient screening systems require experts to manually analyze images to recognize diseases. However, due to the challenging nature of the screening method and lack of trained human resources, devising effective screening-oriented treatment is an expensive task. Automated systems are trying to cope with these challenges; however, these methods do not generalize well to multiple diseases and real-world scenarios. To solve the aforementioned issues, we propose a new method comprising two main steps. The first involves dataset preparation and feature extraction and the other relates to improving a custom deep learning based CenterNet model trained for eye disease classification. Initially, we generate annotations for suspected samples to locate the precise region of interest, while the other part of the proposed solution trains the Center Net model over annotated images. Specifically, we use DenseNet-100 as a feature extraction method on which the one-stage detector, CenterNet, is employed to localize and classify the disease lesions. We evaluated our method over challenging datasets, namely, APTOS-2019 and IDRiD, and attained average accuracy of 97.93% and 98.10%, respectively. We also performed cross-dataset validation with benchmark EYEPACS and Diaretdb1 datasets. Both qualitative and quantitative results demonstrate that our proposed approach outperforms state-of-the-art methods due to more effective localization power of CenterNet, as it can easily recognize small lesions and deal with over-fitted training data. Our proposed framework is proficient in correctly locating and classifying disease lesions. In comparison to existing DR and DME classification approaches, our method can extract representative key points from low-intensity and noisy images and accurately classify them. Hence our approach can play an important role in automated detection and recognition of DR and DME lesions.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus , Retinopatía Diabética , Edema Macular , Retinopatía Diabética/diagnóstico por imagen , Humanos , Edema Macular/diagnóstico por imagen
3.
Diagnostics (Basel) ; 11(5)2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33919358

RESUMEN

A brain tumor is an abnormal growth in brain cells that causes damage to various blood vessels and nerves in the human body. An earlier and accurate diagnosis of the brain tumor is of foremost important to avoid future complications. Precise segmentation of brain tumors provides a basis for surgical planning and treatment to doctors. Manual detection using MRI images is computationally complex in cases where the survival of the patient is dependent on timely treatment, and the performance relies on domain expertise. Therefore, computerized detection of tumors is still a challenging task due to significant variations in their location and structure, i.e., irregular shapes and ambiguous boundaries. In this study, we propose a custom Mask Region-based Convolution neural network (Mask RCNN) with a densenet-41 backbone architecture that is trained via transfer learning for precise classification and segmentation of brain tumors. Our method is evaluated on two different benchmark datasets using various quantitative measures. Comparative results show that the custom Mask-RCNN can more precisely detect tumor locations using bounding boxes and return segmentation masks to provide exact tumor regions. Our proposed model achieved an accuracy of 96.3% and 98.34% for segmentation and classification respectively, demonstrating enhanced robustness compared to state-of-the-art approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA