Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Inflammation ; 45(5): 1950-1967, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35438373

RESUMEN

Excessive inflammatory response caused by infiltration of a large number of neutrophils is one of the important features of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Lipoxin A4 (LXA4) is an important endogenous mediator in the process of inflammation resolution, which has a strong role in promoting inflammation resolution. In this study, we examined the impact of LXA4 on the pulmonary inflammatory response and the neutrophil function in ARDS rats. Our results indicated that exogenous administration of LXA4 could reduce the degree of lung injury in ARDS rats and inhibit the release of pro-inflammatory factors TNF-α and IL-1ß in lung tissue homogenate. However, LXA4 has no lung protective effect on ARDS rats of neutropenia, nor can it inhibit the levels of pro-inflammatory factors TNF-α and IL-1ß in lung tissue homogenate. LXA4 can inhibit the production of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs) in peripheral blood neutrophils of ARDS rats. At the same time, LXA4 can promote the phagocytosis of neutrophils in ARDS rats in vitro and can also promote the apoptosis of neutrophils in ARDS rats. In addition, the effect of LXA4 on the function of neutrophils in ARDS rats is mediated by its receptor ALX. LXA4 can inhibit the release of NE and MPO from neutrophils, thereby reducing the production of NETs. In summary, these findings indicate that LXA4 has a protective effect on LPS-induced ARDS rats by affecting the function of neutrophils.


Asunto(s)
Lipoxinas , Lesión Pulmonar , Síndrome de Dificultad Respiratoria , Animales , Inflamación , Lipopolisacáridos , Lipoxinas/farmacología , Lipoxinas/uso terapéutico , Neutrófilos , Ratas , Especies Reactivas de Oxígeno , Receptores de Lipoxina , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Factor de Necrosis Tumoral alfa
2.
Int Immunopharmacol ; 102: 108348, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34920958

RESUMEN

PURPOSE: Acute respiratory distress syndrome (ARDS) is characterized by uncontrollable inflammation. Cyclooxygenase-2(COX-2) and its metabolite prostaglandins are known to promote the inflammatory resolution of ARDS. Recently, a newly discovered endogenous lipid mediator, Protectin DX (PDX), was also shown to mediate the resolution of inflammation. However, the regulatory of PDX on the pro-resolving COX-2 in ARDS remains unknown. MATERIAL AND METHODS: PDX (5 µg/kg) was injected into rats intravenously 12 h after the lipopolysaccharide (LPS, 3 mg/kg) challenge. Primary rat lung fibroblasts were incubated with LPS (1 µg/ml) and/or PDX (100 nM). Lung pathological changes examined using H&E staining. Protein levels of COX-2, PGDS and PGES were evaluated using western blot. Inflammatory cytokines were tested by qPCR, and the concentration of prostaglandins measured by using ELISA. RESULTS: Our study revealed that, COX-2 and L-PGDS has biphasic activation characteristics that LPS could induce induced by LPS both in vivo and in vitro.. The secondary peak of COX-2, L-PGDS-PGD2 promoted the inflammatory resolution in ARDS model with the DP1 receptor being activated and PDX up-regulated the inflammatory resolutionvia enhancing the secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. CONCLUSION: PDX promoted the resolution of inflammation of ARDS model via enhancing the expression of secondary peak of COX-2/L-PGDS-PGD2 and activating the DP1 receptor. PDX shows promising therapeutic potential in the clinical management of ARDS.


Asunto(s)
Antiinflamatorios/uso terapéutico , Ácidos Docosahexaenoicos/uso terapéutico , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Ácidos Docosahexaenoicos/farmacología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Lipopolisacáridos/farmacología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Prostaglandina D2/metabolismo , Ratas Sprague-Dawley , Receptores de Prostaglandina/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo
3.
Cell Death Discov ; 7(1): 339, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750369

RESUMEN

The uncontrolled inflammatory response caused by a disorder in inflammation resolution is one of the reasons for acute respiratory distress syndrome (ARDS). The macrophage pool markedly expands when inflammatory monocytes, known as recruited macrophages, migrate from the circulation to the lung. The persistent presence of recruited macrophages leads to chronic inflammation in the resolution phase of inflammation. On the contrary, elimination of the recruited macrophages at the injury site leads to the rapid resolution of inflammation. Resolvin D1 (RvD1) is an endogenous lipid mediator derived from docosahexaenoic acid. Mice were administered RvD1 via the tail vein 3 and 4 days after stimulation with lipopolysaccharide. RvD1 reduced the levels of the inflammatory factors in the lung tissue, promoted the anti-inflammatory M2 phenotype, and enhanced the phagocytic function of recruited macrophages to alleviate acute lung injury. We also found that the number of macrophages was decreased in BAL fluid after treatment with RvD1. RvD1 increased the apoptosis of recruited macrophages partly via the FasL-FasR/caspase-3 signaling pathway, and this effect could be blocked by Boc-2, an ALX/PRP2 inhibitor. Taken together, our findings reinforce the concept of therapeutic targeting leading to the apoptosis of recruited macrophages. Thus, RvD1 may provide a new therapy for the resolution of ARDS.

4.
J Pharmacol Exp Ther ; 379(2): 156-165, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34465632

RESUMEN

Acute respiratory distress syndrome (ARDS), a common and fatal clinical condition, is characterized by the destruction of epithelium and augmented permeability of the alveolar-capillary barrier. Resolvin conjugates in tissue regeneration 1 (RCTR1) is an endogenous lipid mediator derived from docosahexaenoic acid , exerting proresolution effects in the process of inflammation. In our research, we evaluated the role of RCTR1 in alveolar fluid clearance (AFC) in lipopolysaccharide-induced ARDS/acute lung injury (ALI) rat model. Rats were injected with RCTR1 (5 µg/kg) via caudal veins 8 hours after lipopolysaccharide (LPS) (14 mg/kg) treatment, and then AFC was estimated after 1 hour of ventilation. Primary type II alveolar epithelial cells were incubated with LPS (1 ug/ml) with or without RCTR1 (10 nM) for 8 hours. Our results showed that RCTR1 significantly enhanced the survival rate, promoted the AFC, and alleviated LPS-induced ARDS/ALI in vivo. Furthermore, RCTR1 remarkably elevated the protein expression of sodium channels and Na, K-ATPase and the activity of Na, K-ATPase in vivo and in vitro. Additionally, RCTR1 also decreased neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) level via upregulating Ser473-phosphorylated-Akt expression. Besides this, inhibitors of receptor for lipoxin A4 (ALX), cAMP, and phosphatidylinositol 3-kinase (PI3K) (BOC-2, KH-7, and LY294002) notably inhibited the effects of RCTR1 on AFC. In summary, RCTR1 enhances the protein levels of sodium channels and Na, K-ATPase and the Na, K-ATPase activity to improve AFC in ALI through ALX/cAMP/PI3K/Nedd4-2 pathway, suggesting that RCTR1 may become a therapeutic drug for ARDS/ALI. SIGNIFICANCE STATEMENT: RCTR1, an endogenous lipid mediator, enhanced the rate of AFC to accelerate the resolution of inflammation in the LPS-induced murine lung injury model. RCTR1 upregulates the expression of epithelial sodium channels (ENaCs) and Na, K-ATPase in vivo and in vitro to accelerate the AFC. The efficacy of RCTR1 on the ENaC and Na, K-ATPase level was in an ALX/cAMP/PI3K/Nedd4-2-dependent manner.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Ácidos Docosahexaenoicos/farmacología , Agonistas del Canal de Sodio Epitelial/farmacología , Canales Epiteliales de Sodio/metabolismo , Alveolos Pulmonares/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Ácidos Docosahexaenoicos/análogos & derivados , Ácidos Docosahexaenoicos/uso terapéutico , Lipopolisacáridos/toxicidad , Masculino , Alveolos Pulmonares/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
5.
Respir Res ; 22(1): 193, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217286

RESUMEN

BACKGROUND: Endothelial glycocalyx loss is integral to increased pulmonary vascular permeability in sepsis-related acute lung injury. Protectin conjugates in tissue regeneration 1 (PCTR1) is a novel macrophage-derived lipid mediator exhibiting potential anti-inflammatory and pro-resolving benefits. METHODS: PCTR1 was administrated intraperitoneally with 100 ng/mouse after lipopolysaccharide (LPS) challenged. Survival rate and lung function were used to evaluate the protective effects of PCTR1. Lung inflammation response was observed by morphology and inflammatory cytokines level. Endothelial glycocalyx and its related key enzymes were measured by immunofluorescence, ELISA, and Western blot. Afterward, related-pathways inhibitors were used to identify the mechanism of endothelial glycocalyx response to PCTR1 in mice and human umbilical vein endothelial cells (HUVECs) after LPS administration. RESULTS: In vivo, we show that PCTR1 protects mice against lipopolysaccharide (LPS)-induced sepsis, as shown by enhanced the survival and pulmonary function, decreased the inflammatory response in lungs and peripheral levels of inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1ß. Moreover, PCTR1 restored lung vascular glycocalyx and reduced serum heparin sulphate (HS), syndecan-1 (SDC-1), and hyaluronic acid (HA) levels. Furthermore, we found that PCTR1 downregulated heparanase (HPA) expression to inhibit glycocalyx degradation and upregulated exostosin-1 (EXT-1) protein expression to promote glycocalyx reconstitution. Besides, we observed that BAY11-7082 blocked glycocalyx loss induced by LPS in vivo and in vitro, and BOC-2 (ALX antagonist) or EX527 (SIRT1 inhibitor) abolished the restoration of HS in response to PCTR1. CONCLUSION: PCTR1 protects endothelial glycocalyx via ALX receptor by regulating SIRT1/NF-κB pathway, suggesting PCTR1 may be a significant therapeutic target for sepsis-related acute lung injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antiinflamatorios/farmacología , Glicocálix/metabolismo , FN-kappa B/metabolismo , Mucosa Respiratoria/metabolismo , Sirtuina 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Ácidos Docosahexaenoicos/farmacología , Glicocálix/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Masculino , Ratones , FN-kappa B/antagonistas & inhibidores , Mucosa Respiratoria/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores
6.
J Inflamm Res ; 14: 1537-1549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33889010

RESUMEN

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating clinical conditions characterized by pulmonary epithelial damage and protein-rich fluid accumulation in the alveolar spaces. Statins are a class of HMG-CoA reductase inhibitors, which exert cholesterol-lowering and anti-inflammatory effects. METHODS: Rosuvastatin (1 mg/kg) was injected intravenously in rats 12 h before lipopolysaccharide (LPS, 10 mg/kg) administration. Eight hours later after LPS challenge, alveolar fluid clearance (AFC) was detected in rats (n = 6-8). Rosuvastatin (0.3 µmol/mL) and LPS were cultured with primary rat alveolar type II epithelial cells for 8 h. RESULTS: Rosuvastatin obviously improved AFC and attenuated lung-tissue damage in ALI model. Moreover, it enhanced AFC by increasing sodium channel and Na,K-ATPase protein expression. It also up-regulated P-Akt via reducing Nedd4-2 in vivo and in vitro. Furthermore, LY294002 blocked the increase in AFC in response to rosuvastatin. Rosuvastatin-induced AFC was found to be partly rely on sodium channel and Na,K-ATPase expression via the PI3K/AKT/Nedd4-2 pathway. CONCLUSION: In summary, the findings of our study revealed the potential role of rosuvastatin in the management of ALI/ARDS.

7.
J Inflamm Res ; 14: 1375-1385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33880053

RESUMEN

INTRODUCTION: Alveolar macrophages that regulate the inflammatory response in lungs are the main target cell for the treatment of inflammatory pulmonary pathologies, such as acute respiratory distress syndrome (ARDS). Yolk sac derived alveolar resident macrophages play an important role in the pulmonary inflammatory response. With regards to anti-inflammatory actions, lipoxin A4 (LXA4) has been identified as an inflammatory "braking signal". METHODS: In vivo, LXA4 (0.1 µg/mouse) was injected intraperitoneally after intratracheal (1 mg/kg) lipopolysaccharide (LPS) administration; flow cytometry was used to measure peripheral blood monocyte derived recruited macrophage and neutrophil numbers; resident alveolar macrophage was depleted by liposome clodronate; CXCL2, CCL2, MMP9 level was detected by RT-PCR and ELISA. In vitro, sorted resident macrophages (1×106) were cultured with LPS (1 µg/mL) and LXA4 (100 nmol/mL) with or without BOC-2 (10 µM) for 24 h to gain a better understanding of the mechanisms of LXA4. RESULTS: LXA4 inhibited tumor necrosis factor-a (TNF-a) and interleukin-1ß (IL-1ß) production induced by LPS. LXA4 also mediated LPS-induced macrophage recruitment and showed that this was dependent on CCL2 secretion and release by resident macrophages. LXA4 protects lung tissue by inhibiting neutrophil recruitment, partly through the CXCL2/MMP-9 signaling pathway. CXCL2 and MMP-9 are mainly expressed by resident macrophages and neutrophils, respectively. Finally, LXA4's beneficial effects were abrogated by BOC-2, an LXA4 receptor inhibitor. CONCLUSION: These results suggest that LXA4 may be a promising therapy for preventing and treating ARDS.

8.
J Cell Mol Med ; 24(18): 10604-10614, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32735065

RESUMEN

Inflammatory cell infiltration contributes to the pathogenesis of acute respiratory distress syndrome (ARDS). Protectin DX (PDX), an endogenous lipid mediator, shows anti-inflammatory and proresolution bioactions. In vivo, the mice were intraperitoneally injected with PDX (0.1 µg/mouse) after intratracheal (1 mg/kg) or intraperitoneal (10 mg/kg) LPS administration. Flow cytometry was used to measure inflammatory cell numbers. Clodronate liposomes were used to deplete resident macrophages. RT-PCR, and ELISA was used to measure MIP-2, MCP-1, TNF-α and MMP9 levels. In vitro, sorted neutrophils, resident and recruited macrophages (1 × 106 ) were cultured with 1 µg/mL LPS and/or 100 nmol/L PDX to assess the chemokine receptor expression. PDX attenuated LPS-induced lung injury via inhibiting recruited macrophage and neutrophil recruitment through repressing resident macrophage MCP-1, MIP-2 expression and release, respectively. Finally, PDX inhibition of neutrophil infiltration and transmembrane was associated with TNF-α/MIP-2/MMP9 signalling pathway. These data suggest that PDX attenuates LPS-stimulated lung injury via reduction of the inflammatory cell recruitment mediated via resident macrophages.


Asunto(s)
Lesión Pulmonar Aguda/patología , Ácidos Docosahexaenoicos/uso terapéutico , Macrófagos/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Administración Intranasal , Animales , Quimiocina CCL2/biosíntesis , Quimiocina CCL2/genética , Quimiocina CXCL2/biosíntesis , Quimiocina CXCL2/genética , Quimiocina CXCL2/fisiología , Quimiotaxis de Leucocito/efectos de los fármacos , Ácido Clodrónico/administración & dosificación , Ácido Clodrónico/farmacología , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/fisiología , Inflamación , Inyecciones Intraperitoneales , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Liposomas , Macrófagos/fisiología , Metaloproteinasa 9 de la Matriz/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Receptores CCR2/antagonistas & inhibidores , Receptores de Interleucina-8B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Migración Transendotelial y Transepitelial/efectos de los fármacos , Factor de Necrosis Tumoral alfa/fisiología
9.
J Cell Mol Med ; 24(17): 9646-9657, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32757380

RESUMEN

Acute respiratory distress syndrome (ARDS) is a fatal disease characterized by excessive infiltration of inflammatory cells. MCTR1 is an endogenously pro-resolution lipid mediator. We tested the hypothesis that MCTR1 accelerates inflammation resolution through resident M2 alveolar macrophage polarization. The mice received MCTR1 via intraperitoneal administration 3 days after LPS stimulation, and then, the bronchoalveolar lavage (BAL) fluid was collected 24 hours later to measure the neutrophil numbers. Flow cytometry was used to sort the resident and recruited macrophages. Post-treatment with MCTR1 offered dramatic benefits in the resolution phase of LPS-induced lung injury, including decreased neutrophil numbers, reduced BAL fluid protein and albumin concentrations and reduced histological injury. In addition, the expression of the M2 markers Arg1, FIZZ1, Remlα, CD206 and Dectin-1 was increased on resident macrophages in the LPS + MCTR1 group. Resident macrophage depletion abrogated the therapeutic effects of MCTR1, and reinjection of the sorted resident macrophages into the lung decreased neutrophil numbers. Finally, treatment with MCTR1 increased STAT6 phosphorylation. The STAT6 inhibitor AS1517499 abolished the beneficial effects of MCTR1. In conclusion, MCTR1 promotes resident M2 alveolar macrophage polarization via the STAT6 pathway to accelerate resolution of LPS-induced lung injury.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Polaridad Celular/fisiología , Lipopolisacáridos/farmacología , Macrófagos Alveolares/metabolismo , Proteínas Oncogénicas/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Inflamación/metabolismo , Pulmón/metabolismo , Activación de Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , Transducción de Señal/fisiología
10.
Int Immunopharmacol ; 76: 105877, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31522017

RESUMEN

Acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS) are life-threatening critical syndromes characterized by the infiltration of a large number of inflammatory cells that lead to an excessive inflammatory response. Resolvin D1 (RvD1), an endogenous lipid mediator, is believed to have anti-inflammatory and proresolving effects. In the present study, we examined the impact of RvD1 on the pulmonary inflammatory response, neutrophil influx, and lung damage in a murine model of lipopolysaccharide (LPS)-induced ALI. Treatment with RvD1 protected mice against LPS-induced ALI, and compared to untreated mice, RvD1-treated mice exhibited significantly ameliorated lung pathological changes, decreased tumor necrosis factor-α (TNF-α) concentrations and attenuated neutrophil infiltration. In addition, treatment with RvD1 attenuated LPS-induced neutrophil infiltration via the downregulation of CXCL2 expression on resident alveolar macrophages. Finally, BOC-2, which inhibits the RvD1 receptor lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2), reversed the protective effects of RvD1. These data demonstrate that RvD1 ameliorates LPS-induced ALI via the suppression of neutrophil infiltration by an ALX/FPR2-dependent reduction in CXCL2 expression on resident alveolar macrophages.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Quimiocina CXCL2/antagonistas & inhibidores , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Macrófagos Alveolares/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/inmunología , Lesión Pulmonar Aguda/patología , Animales , Quimiocina CXCL2/genética , Quimiocina CXCL2/inmunología , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/inmunología , Ratones Endogámicos C57BL , Infiltración Neutrófila/efectos de los fármacos
11.
Biosci Rep ; 37(2)2017 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-28108674

RESUMEN

The present study aimed to investigate the effects of miR-338 on morphine tolerance through the targeting of CXC chemokine receptor-4 (CXCR4) in a rat model of bone cancer pain (BCP). Sprague-Dawley (SD) rats were obtained and divided into model saline (n=10), model morphine (n=50), normal saline (n=10) and normal morphine (healthy rats, n=10) groups. After BCP rat model establishment, the remaining SD rats (n=40) in the model saline group were assigned into pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4 shRNA, blank and PBS groups. Luciferase reporter gene assay was used for luciferase activity. Quantitative real-time PCR (qRT-PCR) and Western blotting were performed to detect the miR-338 and CXCR4 mRNA and protein expression. The model saline group showed increased mRNA and protein expressions of CXCR4 but decreased miR-338 compared with the model saline group, and the model morphine group had increased mRNA and protein expressions of CXCR4 but decreased miR-338 compared with the model saline group. The mRNA and protein expressions of miR-338 in the pLV-THM-miR-338 group increased remarkably while those of the pLV-THM-anti-miR-338 group decreased significantly compared with the CXCR4 shRNA, blank and PBS groups. The pLV-THM-miR-338, pLV-THM-anti-miR-338, CXCR4 shRNA and CXCR4 mRNA groups all had lower mRNA and protein expressions of CXCR4 than those in the blank and PBS groups. miR-338 exerts significant influence in the inhibition of morphine tolerance by suppressing CXCR4 in BCP.


Asunto(s)
Neoplasias Óseas/genética , Dolor en Cáncer/genética , Tolerancia a Medicamentos/genética , MicroARNs/genética , Morfina/farmacología , Receptores CXCR4/genética , Animales , Conducta Animal/fisiología , Western Blotting , Neoplasias Óseas/metabolismo , Neoplasias Óseas/fisiopatología , Dolor en Cáncer/metabolismo , Dolor en Cáncer/fisiopatología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Microscopía Fluorescente , Interferencia de ARN , Ratas Sprague-Dawley , Receptores CXCR4/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA