Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Oxf Med Case Reports ; 2024(8): omae095, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39193479

RESUMEN

Intussusception is a rare presentation in adult population and usually occurs secondary to an underlying pathology. We report an unusual case of a 28-year-old female who developed a colo-colonic intussusception secondary to Burkitt lymphoma which was managed with an extended right hemicolectomy. The case was further complicated by a segment of small bowel with malignant adhesion to a prosthetic mesh requiring resection of the involved segment of small bowel. We have discussed the significance of this case as well as general considerations in the surgical management of adult intussusception.

2.
Cell Biol Int ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169545

RESUMEN

Shikonin, an herbal naphthoquinone, demonstrates a broad spectrum of pharmacological properties. Owing to increasingly adverse environmental conditions, human skin is vulnerable to harmful influences from dust particles. This study explored the antioxidant capabilities of shikonin and its ability to protect human keratinocytes from oxidative stress induced by fine particulate matter (PM2.5). We found that shikonin at a concentration of 3 µM was nontoxic to human keratinocytes and effectively scavenged reactive oxygen species (ROS) while increasing the production of reduced glutathione (GSH). Furthermore, shikonin enhanced GSH level by upregulating glutamate-cysteine ligase catalytic subunit and glutathione synthetase mediated by nuclear factor-erythroid 2-related factor. Shikonin reduced ROS levels induced by PM2.5, leading to recovering PM2.5-impaired cellular biomolecules and cell viability. Shikonin restored the GSH level in PM2.5-exposed keratinocytes via enhancing the expression of GSH-synthesizing enzymes. Notably, buthionine sulphoximine, an inhibitor of GSH synthesis, diminished effect of shikonin against PM2.5-induced cell damage, confirming the role of GSH in shikonin-induced cytoprotection. Collectively, these findings indicated that shikonin could provide substantial cytoprotection against the adverse effects of PM2.5 through direct ROS scavenging and modulation of cellular antioxidant system.

4.
Tissue Cell ; 90: 102521, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39128192

RESUMEN

Larvae are the most important feeding and developmental stage in the life cycle of insects. Correspondingly, the larval midguts, as the primary digestive organs, undergo diverse specialization among insect lineages. Larvae of Scarabaeoidae, commomly known as white grubs, exhibit diversity on feeding habits at the familial or subfamilial level. However, the ultrastructure of larval midguts is not yet satisfactorily understood. In this study, the larval midguts of Trypoxylus dichotomus and Anomala corpulenta were compared using light and transmission electron microscopy for the first time, to uncover the ultrastructural differences between the midguts of saprophagous and phytophagous white grubs. The larval midguts of both species are tubular with three circles of the gastric caeca, and share morphological similarities in midgut epithelial cells, layers of basal lamina, and the digestive and regenerative cells. However, the midguts of the two species differ significantly in the shape of the gastric caeca and exhibit slightly differences in muscle structure. The morphology of larval midgut is related to the feeding habits.


Asunto(s)
Escarabajos , Larva , Animales , Larva/ultraestructura , Larva/crecimiento & desarrollo , Escarabajos/ultraestructura , Sistema Digestivo/ultraestructura , Microscopía Electrónica de Transmisión
5.
J Biochem Mol Toxicol ; 38(9): e23806, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39148258

RESUMEN

Exposure to fine particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) can cause oxidative damage and apoptosis in the human skin. Chlorogenic acid (CGA) is a bioactive polyphenolic compound with antioxidant, antifungal, and antiviral properties. The objective of this study was to identify the ameliorating impact of CGA that might protect human HaCaT cells against PM2.5. CGA significantly scavenged the reactive oxygen species (ROS) generated by PM2.5, attenuated oxidative cellular/organelle damage, mitochondrial membrane depolarization, and suppressed cytochrome c release into the cytosol. The application of CGA led to a reduction in the expression levels of Bcl-2-associated X protein, caspase-9, and caspase-3, while simultaneously increasing the expression of B-cell lymphoma 2. In addition, CGA was able to reverse the decrease in cell viability caused by PM2.5 via the inhibition of extracellular signal-regulated kinase (ERK). This effect was further confirmed by the use of the mitogen-activated protein kinase kinase inhibitor, which acted upstream of ERK. In conclusion, CGA protected keratinocytes from mitochondrial damage and apoptosis via ameliorating PM2.5-induced oxidative stress and ERK activation.


Asunto(s)
Apoptosis , Ácido Clorogénico , Queratinocitos , Estrés Oxidativo , Material Particulado , Ácido Clorogénico/farmacología , Humanos , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Material Particulado/toxicidad , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Especies Reactivas de Oxígeno/metabolismo , Células HaCaT , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
6.
Front Public Health ; 12: 1421774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100946

RESUMEN

Background: The study aimed to evaluate the positivity rates and genotype distribution of the multiplex PCR capillary electrophoresis (MPCE) and PCR-Reverse Dot Blot (PCR-RDB) assays for human papillomavirus (HPV) detection in cervical cancer tissue specimens, and to explore their detection principles and applications in large-scale population screening. Methods: The MPCE and PCR-RDB assays were performed separately on 425 diagnosed cervical cancer tissue specimens. Subsequently, the results of both assays were compared based on the HPV infection positivity rates and genotype distribution. Results: The overall positive rates of HPV genotypes for the MPCE and PCR-RDB assays were 97.9% and 92.9%, respectively. A p-value < 0.001 indicated a statistically significance difference in consistency between the two assays. The kappa value was 0.390, indicating that the consistency between both assays was fair. HPV16 was the most common single-genotype infection type, with infection rates detected via MPCE and PCR-RDB assays being 75.7% and 68.3%, respectively. In the age group >50 years, the HPV multiple-type infection rate detected via MPCE assay was significantly higher than that detected by the PCR-RDB assay, with a statistically significant difference (p = 0.002). Conclusion: To reduce the false-negative rate and improve screening efficiency, the MPCE assay, which targets the oncogenic gene E6/E7 segments, can be extended to the general female population for the early detection, diagnosis, and treatment of cervical cancer.


Asunto(s)
ADN Viral , Electroforesis Capilar , Genotipo , Reacción en Cadena de la Polimerasa Multiplex , Papillomaviridae , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/virología , Neoplasias del Cuello Uterino/diagnóstico , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex/métodos , Adulto , Papillomaviridae/genética , Papillomaviridae/aislamiento & purificación , ADN Viral/genética , Infecciones por Papillomavirus/diagnóstico , Infecciones por Papillomavirus/virología , Técnicas de Genotipaje/métodos , Anciano , Reacción en Cadena de la Polimerasa/métodos , Virus del Papiloma Humano
8.
Biomol Ther (Seoul) ; 32(4): 499-507, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38914480

RESUMEN

Specific sensitivity of the skin to ultraviolet B (UVB) rays is one of the mechanisms responsible for widespread skin damage. This study tested whether 1,3,5-trihydroxybenzene (THB), a compound abundant in marine products, might inhibit UVB radiation-induced NADPH oxidase 4 (NOX4) in both human HaCaT keratinocytes and mouse dorsal skin and explore its cytoprotective mechanism. The mechanism of action was determined using western blotting, immunocytochemistry, NADP+/NADPH assay, reactive oxygen species (ROS) detection, and cell viability assay. THB attenuated UVB-induced NOX4 expression both in vitro and in vivo, and suppressed UVB-induced ROS generation via NADP+ production, resulting in increased cell viability with decreased apoptosis. THB also reduced the expression of UVB-induced phosphorylated AMP-activated protein kinase (AMPK) and phosphorylated c-Jun N-terminal kinase (JNK). THB suppressed UVB-induced NOX4 expression and ROS generation by inhibiting AMPK and JNK signaling pathways, thereby inhibiting cellular damage. These results showed that THB could be developed as a UV protectant.

9.
Toxicol In Vitro ; 99: 105870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848825

RESUMEN

Particulate matter 2.5 (PM2.5) causes skin aging, inflammation, and impaired skin homeostasis. Hyperoside, a flavanol glycoside, has been proposed to reduce the risk of diseases caused by oxidative stress. This study evaluated the cytoprotective potential of hyperoside against PM2.5-induced skin cell damage. Cultured human HaCaT keratinocytes were pretreated with hyperoside and treated with PM2.5. Initially, the cytoprotective and antioxidant ability of hyperoside against PM2.5 was evaluated. Western blotting was further employed to investigate endoplasmic reticulum (ER) stress and cellular senescence and for evaluation of cell cycle regulation-related proteins. Hyperoside inhibited PM2.5-mediated ER stress as well as mitochondrial damage. Colony formation assessment confirmed that PM2.5-impaired cell proliferation was restored by hyperoside. Moreover, hyperoside reduced the activation of PM2.5-induced ER stress-related proteins, such as protein kinase R-like ER kinase, cleaved activating transcription factor 6, and inositol-requiring enzyme 1. Hyperoside promoted cell cycle progression in the G0/G1 phase by upregulating the PM2.5-impaired cell cycle regulatory proteins. Hyperoside significantly reduced the expression of PM2.5-induced senescence-associated ß-galactosidase and matrix metalloproteinases (MMPs), such as MMP-1 and MMP-9. Overall, hyperoside ameliorated PM2.5-impaired cell proliferation, ER stress, and cellular senescence, offering potential therapeutic implications for mitigating the adverse effects of environmental pollutants on skin health.


Asunto(s)
Senescencia Celular , Estrés del Retículo Endoplásmico , Queratinocitos , Material Particulado , Quercetina , Humanos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Material Particulado/toxicidad , Senescencia Celular/efectos de los fármacos , Quercetina/farmacología , Quercetina/análogos & derivados , Queratinocitos/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células HaCaT , Antioxidantes/farmacología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/citología
10.
Fish Shellfish Immunol ; 151: 109701, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38878911

RESUMEN

In the field of aquaculture, the enhancement of animal health and disease prevention is progressively being tackled using alternatives to antibiotics, including vaccines and probiotics. This study was designed to evaluate the potential of a recombinant Bacillus methylotrophicus, engineered to express the outer membrane channel protein TolC of Aeromonas hydrophila AH3 and the green fluorescent protein GFP, as an oral vaccine. Initially, the genes encoding tolC and GFP were cloned into a prokaryotic expression system, and anti-TolC mouse antiserum was generated. Subsequently, the tolC gene was subcloned into a modified pMDGFP plasmid, which was transformed into B. methylotrophicus WM-1 for protein expression. The recombinant B. methylotrophicus BmT was then administered to grass carp via co-feeding, and its efficacy as an oral vaccine was assessed. Our findings demonstrated successful expression of the 55 kDa TolC and 28 kDa GFP proteins, and the preparation of polyclonal antibodies with high specificity. The BmT exhibited stable expression of the GFP-TolC fusion protein and excellent genetic stability. Following oral immunization, significant elevations were observed in serum-specific IgM levels and the activities of acid phosphatase (ACP), alkaline phosphatase (AKP), superoxide dismutase (SOD), and lysozyme (LZM) in grass carp. Concurrently, significant upregulation of immune-related genes, including IFN-I, IL-10, IL-1ß, TNF-α, and IgT, was noted in the intestines, head kidney, and spleen of the grass carp. Colonization tests further revealed that the BmT persisted in the gut of immunized fish even after a fasting period of 7 days. Notably, oral administration of BmT enhanced the survival rate of grass carp following A. hydrophila infection. These results suggest that the oral BmT vaccine developed in this study holds promise for future applications in aquaculture.


Asunto(s)
Aeromonas hydrophila , Vacunas Bacterianas , Carpas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Carpas/inmunología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/inmunología , Aeromonas hydrophila/inmunología , Administración Oral , Vacunación/veterinaria , Bacillus , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética
11.
Toxicol Mech Methods ; 34(7): 803-812, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38736318

RESUMEN

This study investigated the mechanism of silver nanoparticle (AgNP) cytotoxicity from a mitochondrial perspective. The effect of AgNP on manganese superoxide dismutase (MnSOD), a mitochondrial antioxidant enzyme, against oxidative stress has not been studied in detail. We demonstrated that AgNP decreased MnSOD mRNA level, protein expression, and activity in human Chang liver cells in a time-dependent manner. AgNP induced the production of mitochondrial reactive oxygen species (mtROS), particularly superoxide anion. AgNP was found to increase mitochondrial calcium level and disrupt mitochondrial function, leading to reduced ATP level, succinate dehydrogenase activity, and mitochondrial permeability. AgNP induced cytochrome c release from the mitochondria into the cytoplasm, attenuated the expression of the anti-apoptotic proteins phospho Bcl-2 and Mcl-1, and induced the expression of the pro-apoptotic proteins Bim and Bax. In addition, c-Jun N-terminal kinase (JNK) phosphorylation was significantly increased by AgNP. Treatment with elamipretide (a mitochondria-targeted antioxidant) and SP600125 (a JNK inhibitor) showed the involvement of MnSOD and JNK in these processes. These results indicated that AgNP damaged human Chang liver cells by destroying mitochondrial function through the accumulation of mtROS.


Asunto(s)
Nanopartículas del Metal , Especies Reactivas de Oxígeno , Superóxido Dismutasa , Humanos , Nanopartículas del Metal/toxicidad , Superóxido Dismutasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Plata/toxicidad , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Supervivencia Celular/efectos de los fármacos , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/enzimología , Hepatocitos/patología
12.
Exp Ther Med ; 28(1): 275, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38800049

RESUMEN

Particulate matter 2.5 (PM2.5) imposes a heavy burden on the skin and respiratory system of human beings, causing side effects such as aging, inflammation and cancer. Astaxanthin (ATX) is a well-known antioxidant widely used for its anti-inflammatory and anti-aging properties. However, few studies have investigated the protective effects of ATX against PM2.5-induced senescence in HaCaT cells. In the present study, the levels of reactive oxygen species (ROS) and antioxidant enzymes were measured after treatment with PM2.5. The results revealed that PM2.5 generated excessive ROS and reduced the translocation of nuclear factor erythroid 2-related factor 2 (NRF2), subsequently reducing the expression of antioxidant enzymes. However, pretreatment with ATX reversed the ROS levels as well as the expression of antioxidant enzymes. In addition, ATX protected cells from PM2.5-induced DNA damage and rescued PM2.5-induced cell cycle arrest. The levels of senescence-associated phenotype markers, such as interleukin-1ß, matrix metalloproteinases, and ß-galactosidase, were increased by exposure to PM2.5, however these effects were reversed by ATX. After interfering with NRF2 mRNA expression and exposing cells to PM2.5, the levels of ROS and ß-galactosidase were higher compared with siControl RNA cells exposed to PM2.5. However, ATX inhibited ROS and ß-galactosidase levels in both the siControl RNA and the siNRF2 RNA groups. Thus, ATX protects HaCaT keratinocytes from PM2.5-induced senescence by partially inhibiting excessive ROS generation via the NRF2 signaling pathway.

13.
Mol Med Rep ; 30(1)2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38757300

RESUMEN

Physiological stress such as excessive reactive oxygen species (ROS) production may contribute normal fibroblasts activation into cancer­associated fibroblasts, which serve a crucial role in certain types of cancer such as pancreatic, breast, liver and lung cancer. The present study aimed to examine the cytoprotective effects of luteolin (3',4',5,7­tetrahydroxyflavone) against hydrogen peroxide (H2O2)­generated oxidative stress in lung fibroblasts. To examine the effects of luteolin against H2O2­induced damages, cell viability, sub­G1 cell population, nuclear staining with Hoechst 33342, lipid peroxidation and comet assays were performed. To evaluate the effects of luteolin on the protein expression level of apoptosis, western blot assay was performed. To assess the antioxidant effects of luteolin, detection of ROS using H2DCFDA staining, O2­ and ·OH using electron spin resonance spectrometer and antioxidant enzyme activity was performed. In a cell­free chemical system, luteolin scavenges superoxide anion and hydroxyl radical generated by xanthine/xanthine oxidase and the Fenton reaction (FeSO4/H2O2). Furthermore, Chinese hamster lung fibroblasts (V79­4) treated with H2O2 showed a significant increase in cellular ROS. Intracellular ROS levels and damage to cellular components such as lipids and DNA in H2O2­treated cells were significantly decreased by luteolin pretreatment. Luteolin increased cell viability, which was impaired following H2O2 treatment and prevented H2O2­mediated apoptosis. Luteolin suppressed active caspase­9 and caspase­3 levels while increasing Bcl­2 expression and decreasing Bax protein levels. Additionally, luteolin restored levels of glutathione that was reduced in response to H2O2. Moreover, luteolin enhanced the activity and protein expressions of superoxide dismutase, catalase, glutathione peroxidase, and heme oxygenase­1. Overall, these results indicated that luteolin inhibits H2O2­mediated cellular damage by upregulating antioxidant enzymes.


Asunto(s)
Antioxidantes , Apoptosis , Supervivencia Celular , Fibroblastos , Peróxido de Hidrógeno , Luteolina , Estrés Oxidativo , Especies Reactivas de Oxígeno , Luteolina/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Línea Celular , Cricetinae , Peroxidación de Lípido/efectos de los fármacos , Cricetulus
14.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38648079

RESUMEN

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Asunto(s)
Autofagia , Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Ornitina Descarboxilasa , Femenino , Humanos , Masculino , Células A549 , Autofagia/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/genética , Pronóstico , Regulación hacia Arriba
15.
Int J Med Sci ; 21(5): 937-948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617009

RESUMEN

The skin is directly exposed to atmospheric pollutants, especially particulate matter 2.5 (PM2.5) in the air, which poses significant harm to skin health. However, limited research has been performed to identify molecules that can confer resistance to such substances. Herein, we analyzed the effect of fermented sea tangle (FST) extract on PM2.5-induced human HaCaT keratinocyte damage. Results showed that FST extract, at concentrations less than 800 µg/mL, exhibited non-significant toxicity to cells and concentration-dependent inhibition of PM2.5-induced reactive oxygen species (ROS) production. PM2.5 induced oxidative stress by stimulating ROS, resulting in DNA damage, lipid peroxidation, and protein carbonylation, which were inhibited by the FST extract. FST extract significantly suppressed the increase in calcium level and apoptosis caused by PM2.5 treatment and significantly restored the reduced cell viability. Mitochondrial membrane depolarization occurred due to PM2.5 treatment, however, FST extract recovered mitochondrial membrane polarization. PM2.5 inhibited the expression of the anti-apoptotic protein Bcl-2, and induced the expression of pro-apoptotic proteins Bax and Bim, the apoptosis initiator caspase-9, as well as the executor caspase-3, however, FST extract effectively protected the changes in the levels of these proteins caused by PM2.5. Interestingly, pan-caspase inhibitor Z-VAD-FMK treatment enhanced the anti-apoptotic effect of FST extract in PM2.5-treated cells. Our results indicate that FST extract prevents PM2.5-induced cell damage via inhibition of mitochondria-mediated apoptosis in human keratinocytes. Accordingly, FST extract could be included in skin care products to protect cells against the harmful effects of PM2.5.


Asunto(s)
Queratinocitos , Piel , Humanos , Especies Reactivas de Oxígeno , Apoptosis , Material Particulado/toxicidad
16.
Artif Organs ; 48(8): 839-848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38660762

RESUMEN

BACKGROUND: Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS: Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS: TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS: TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.


Asunto(s)
Movimiento Celular , Proliferación Celular , Supervivencia Celular , Músculo Liso Vascular , Miocitos del Músculo Liso , Fenotipo , Andamios del Tejido , Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Andamios del Tejido/química , Bovinos , Células Cultivadas , Ingeniería de Tejidos/métodos , Técnicas de Cultivo Tridimensional de Células/métodos
17.
BMJ Case Rep ; 17(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642935

RESUMEN

We describe a case of bowel perforation secondary to a recurrence of primary fallopian tube carcinoma treated more than a decade ago. A woman in her 70s presented to a rural centre with an acute abdomen. An abdominal CT showed a perforated ileum secondary to a pelvic mass. Emergency laparotomy identified the pelvic mass that was adherent to the side wall and invading the ileum at the site of perforation. Its adherence to the external iliac vessels posed a challenge to achieve en-bloc resection; therefore, a defunctioning loop ileostomy was created. Final histopathology and immunopathology were consistent with the recurrence of her primary fallopian tube carcinoma. The patient was further discussed in a multidisciplinary team meeting at a tertiary referral hospital. This case highlighted the importance of having a high index of suspicion for cancer recurrence, the utility of rapid source control laparotomy and multidisciplinary team patient management.


Asunto(s)
Carcinoma , Neoplasias de las Trompas Uterinas , Perforación Intestinal , Peritonitis , Femenino , Humanos , Neoplasias de las Trompas Uterinas/complicaciones , Neoplasias de las Trompas Uterinas/cirugía , Trompas Uterinas , Perforación Intestinal/etiología , Perforación Intestinal/cirugía , Recurrencia Local de Neoplasia/complicaciones , Peritonitis/etiología , Peritonitis/cirugía , Anciano
18.
Artículo en Inglés | MEDLINE | ID: mdl-38683453

RESUMEN

Runt domain transcription factor 3 (RUNX3) suppresses many different cancer types and is disabled by mutations, epigenetic repression, or cytoplasmic mislocalization. In this study, we investigated whether oxidative stress is associated with RUNX3 accumulation from the nucleus to the cytoplasm in terms of histone modification. Oxidative stress elevated histone deacetylase (HDAC) level and lowered that of histone acetyltransferase. In addition, oxidative stress decreased the expression of mixed lineage leukemia (MLL), a histone methyltransferase, but increased the expression of euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a), which is also a histone methyltransferase. Moreover, oxidative stress-induced RUNX3 phosphorylation, Src activation, and Jun activation domain-binding protein 1 (JAB1) expression were inhibited by knockdown of HDAC and G9a, restoring the nuclear localization of RUNX3 under oxidative stress. Cytoplasmic RUNX3 localization was followed by oxidative stress-induced histone modification, activated Src along with RUNX3 phosphorylation, and induction of JAB1, resulting in RUNX3 inactivation.

19.
Mol Cells ; 47(5): 100066, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679413

RESUMEN

Particulate matter 2.5 (PM2.5) poses a serious threat to human health and is responsible for respiratory disorders, cardiovascular diseases, and skin disorders. 3-Bromo-4,5-dihydroxybenzaldehyde (3-BDB), abundant in marine red algae, exhibits anti-inflammatory, antioxidant, and antidiabetic activities. In this study, we investigated the protective mechanisms of 3-BDB against PM2.5-induced cell cycle arrest and autophagy in human keratinocytes. Intracellular reactive oxygen species generation, DNA damage, cell cycle arrest, intracellular Ca2+ level, and autophagy activation were tested. 3-BDB was found to restore cell proliferation and viability which were reduced by PM2.5. Furthermore, 3-BDB reduced PM2.5-induced reactive oxygen species levels, DNA damage, and attenuated cell cycle arrest. Moreover, 3-BDB ameliorated the PM2.5-induced increases in cellular Ca2+ level and autophagy activation. While PM2.5 treatment reduced cell growth and viability, these were restored by the treatment with the autophagy inhibitor bafilomycin A1 or 3-BDB. The findings indicate that 3-BDB ameliorates skin cell death caused by PM2.5 via inhibiting cell cycle arrest and autophagy. Hence, 3-BDB can be exploited as a preventive/therapeutic agent for PM2.5-induced skin impairment.


Asunto(s)
Autofagia , Benzaldehídos , Puntos de Control del Ciclo Celular , Queratinocitos , Material Particulado , Especies Reactivas de Oxígeno , Autofagia/efectos de los fármacos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Material Particulado/toxicidad , Benzaldehídos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos
20.
Environ Pollut ; 347: 123675, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447650

RESUMEN

Stimulation of human keratinocytes with particulate matter 2.5 (PM2.5) elicits complex signaling events, including a rise in the generation of reactive oxygen species (ROS). However, the mechanisms underlying PM2.5-induced ROS production remain unknown. Here, we show that PM2.5-induced ROS production in human keratinocytes is mediated via the NADPH oxidase (NOXs) system and the Ca2+ signaling pathway. PM2.5 treatment increased the expression of NOX1, NOX4, and a calcium-sensitive NOX, dual oxidase 1 (DUOX1), in human epidermal keratinocyte cell line. PM2.5 bound to aryl hydrocarbon receptor (AhR), and this complex bound to promoter regions of NOX1 and DUOX1, suggesting that AhR acted as a transcription factor of NOX1 and DUOX1. PM2.5 increased the transcription of DUOX1 via epigenetic modification. Moreover, a link between DNA demethylase and histone methyltransferase with the promoter regions of DUOX1 led to an elevation in the expression of DUOX1 mRNA. Interestingly, PM2.5 increased NOX4 expression and promoted the interaction of NOX4 and Ca2+ channels within the cytoplasmic membrane or endoplasmic reticulum, leading to Ca2+ release. The increase in intracellular Ca2+ concentration activated DUOX1, responsible for ROS production. Our findings provide evidence for a PM2.5-mediated ROS-generating system network, in which increased NOX1, NOX4, and DUOX1 expression serves as a ROS signal through AhR and Ca2+ activation.


Asunto(s)
NADPH Oxidasas , Receptores de Hidrocarburo de Aril , Humanos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Material Particulado/toxicidad , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA