RESUMEN
Zinpentraxin alfa is a recombinant form of the human pentraxin-2 that was studied in idiopathic pulmonary fibrosis (IPF). To improve the purity and yield of the drug material, a 2nd-generation drug product was developed. To characterize and compare the pharmacokinetic (PK) properties of the 1st- and 2nd-generation zinpentraxin alfa, PK studies were conducted in healthy volunteers (HVs). In a phase 1 randomized, double-blind, 2-sequence crossover, sequential 2-stage study (ISRCTN59409907), single intravenous (IV) doses of 1st- and 2nd-generation zinpentraxin alfa at 10 mg/kg were studied with a blinded interim analysis (IA) at the end of stage 1. Bioequivalence (BE) was achieved for the maximum observed plasma concentration (Cmax), but the overall exposure was higher for the 2nd- compared to the 1st-generation zinpentraxin alfa. The study was stopped after stage 1 as the gating criteria were met based on the result of the blinded IA. Safety profiles were similar for the 1st- and 2nd-generation drug products, and antidrug antibody (ADA) was not observed in this study.
Asunto(s)
Estudios Cruzados , Voluntarios Sanos , Componente Amiloide P Sérico , Equivalencia Terapéutica , Humanos , Masculino , Método Doble Ciego , Adulto , Componente Amiloide P Sérico/metabolismo , Femenino , Persona de Mediana Edad , Adulto Joven , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/efectos adversos , Área Bajo la Curva , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Administración IntravenosaRESUMEN
Rapid evolution of enzymes provides unique molecular insights into the remarkable adaptability of proteins and helps to elucidate the relationship between amino acid sequence, structure, and function. We interrogated the evolution of the phosphotriesterase from Pseudomonas diminuta (PdPTE), which hydrolyzes synthetic organophosphates with remarkable catalytic efficiency. PTE is thought to be an evolutionarily "young" enzyme, and it has been postulated that it has evolved from members of the phosphotriesterase-like lactonase (PLL) family that show promiscuous organophosphate-degrading activity. Starting from a weakly promiscuous PLL scaffold (Dr0930 from Deinococcus radiodurans ), we designed an extremely efficient organophosphate hydrolase (OPH) with broad substrate specificity using rational and random mutagenesis in combination with in vitro activity screening. The OPH activity for seven organophosphate substrates was simultaneously enhanced by up to 5 orders of magnitude, achieving absolute values of catalytic efficiencies up to 10(6) M(-1) s(-1). Structural and computational analyses identified the molecular basis for the enhanced OPH activity of the engineered PLL variants and demonstrated that OPH catalysis in PdPTE and the engineered PLL differ significantly in the mode of substrate binding.
Asunto(s)
Organofosfatos/metabolismo , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Pseudomonas/enzimología , Pseudomonas/metabolismo , Hidrolasas de Éster Carboxílico/química , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Mutagénesis , Hidrolasas de Triéster Fosfórico/química , Conformación Proteica , Pseudomonas/química , Pseudomonas/genética , Estereoisomerismo , Especificidad por SustratoRESUMEN
Dr0930, a member of the amidohydrolase superfamily in Deinococcus radiodurans, was cloned, expressed, and purified to homogeneity. The enzyme crystallized in the space group P3121, and the structure was determined to a resolution of 2.1 A. The protein folds as a (beta/alpha)7beta-barrel, and a binuclear metal center is found at the C-terminal end of the beta-barrel. The purified protein contains a mixture of zinc and iron and is intensely purple at high concentrations. The purple color was determined to be due to a charge transfer complex between iron in the beta-metal position and Tyr-97. Mutation of Tyr-97 to phenylalanine or complexation of the metal center with manganese abolished the absorbance in the visible region of the spectrum. Computational docking was used to predict potential substrates for this previously unannotated protein. The enzyme was found to catalyze the hydrolysis of delta- and gamma-lactones with an alkyl substitution at the carbon adjacent to the ring oxygen. The best substrate was delta-nonanoic lactone with a kcat/Km of 1.6 x 10(6) M-1 s-1. Dr0930 was also found to catalyze the very slow hydrolysis of paraoxon with values of kcat and kcat/Km of 0.07 min-1 and 0.8 M-1 s-1, respectively. The amino acid sequence identity to the phosphotriesterase (PTE) from Pseudomonas diminuta is 30%. The eight substrate specificity loops were transplanted from PTE to Dr0930, but no phosphotriesterase activity could be detected in the chimeric PTE-Dr0930 hybrid. Mutation of Phe-26 and Cys-72 in Dr0930 to residues found in the active site of PTE enhanced the kinetic constants for the hydrolysis of paraoxon. The F26G/C72I mutant catalyzed the hydrolysis of paraoxon with a kcat of 1.14 min-1, an increase of 16-fold over the wild-type enzyme. These results support previous proposals that phosphotriesterase activity evolved from an ancestral parent enzyme possessing lactonase activity.