Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409076

RESUMEN

Photosensitizers (PSs) are known as powerful antibacterial agents that are activated by direct exposure to visible light. PSs can be noncovalently entrapped into the silica gel network for their controlled release into a contaminated area. The immobilization of PS-containing gel matrices on a polymer support expands their possible applications, such as antibacterial surfaces and coatings, which can be used for the disinfection of liquids. In the current study, we report the use of Rose Bengal (RB) incorporated into organically modified silica matrices (RB@ORMOSIL matrices) by the sol-gel technique. The RB matrices exhibit high activity against Gram-positive and Gram-negative bacteria under illumination by white light. The amount and timing of solidifier addition to the matrix affected the interaction of the latter with the RB, which in turn could affect the antibacterial activity of RB. The most active specimen against both Gram-positive and Gram-negative bacterial cells was the RB6@ORMOSIL matrix immobilized on a linear low-density polyethylene surface, which was prepared by an easy, cost-effective, and simple thermal adhesion method. This specimen, RB6@OR@LLDPE, showed the low release of RB in an aqueous environment, and exhibited high long-term antibacterial activity in at least 14 rounds of recycled use against S. aureus and in 11 rounds against E. coli.


Asunto(s)
Antibacterianos , Rosa Bengala , Antibacterianos/farmacología , Escherichia coli , Bacterias Gramnegativas , Bacterias Grampositivas , Fármacos Fotosensibilizantes , Rosa Bengala/farmacología , Dióxido de Silicio , Staphylococcus aureus
2.
Materials (Basel) ; 13(4)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059427

RESUMEN

An innovative catalyst is reported for removing suspect carcinogen trichloroacetic acid (TCA) found in water after chlorination. SilverSil, a methyl-modified silica xerogel doped with Ag nanoparticles, shows remarkably high and stable activity as heterogeneous catalyst for the reductive dehalogenation of TCA with NaBH4 as reducing agent. Chloroacetic acid and acetic acid are the main products of the highly reproducible reductive dehalogenation. The low cost, high stability and ease of application of the SilverSil sol-gel catalyst to continuous processes open the route to the industrial uptake of SilverSil to free chlorinated waters from a probable human carcinogenic agent exerting significant genotoxic and cytotoxic effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA