Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38203235

RESUMEN

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions generated both by spontaneous base loss and as intermediates of base excision DNA repair. In human cells, they are normally repaired by an essential AP endonuclease, APE1, encoded by the APEX1 gene. Other enzymes can cleave AP sites by either hydrolysis or ß-elimination in vitro, but it is not clear whether they provide the second line of defense in living cells. Here, we studied AP site repairs in APEX1 knockout derivatives of HEK293FT cells using a reporter system based on transcriptional mutagenesis in the enhanced green fluorescent protein gene. Despite an apparent lack of AP site-processing activity in vitro, the cells efficiently repaired the tetrahydrofuran AP site analog resistant to ß-elimination. This ability persisted even when the second AP endonuclease homolog, APE2, was also knocked out. Moreover, APEX1 null cells were able to repair uracil, a DNA lesion that is removed via the formation of an AP site. If AP site hydrolysis was chemically blocked, the uracil repair required the presence of NTHL1, an enzyme that catalyzes ß-elimination. Our results suggest that human cells possess at least two back-up AP site repair pathways, one of which is NTHL1-dependent.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , ADN , Humanos , Daño del ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Endonucleasas , Reparación por Escisión , Uracilo
2.
PLoS One ; 16(9): e0257473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34529719

RESUMEN

The major human apurinic/apyrimidinic (AP) site endonuclease, APEX1, is a central player in the base excision DNA repair (BER) pathway and has a role in the regulation of DNA binding by transcription factors. In vertebrates, APEX1 knockouts are embryonic lethal, and only a handful of knockout cell lines are known. To facilitate studies of multiple functions of this protein in human cells, we have used the CRISPR/Cas9 system to knock out the APEX1 gene in a widely used non-cancer hypotriploid HEK 293FT cell line. Two stable knockout lines were obtained, one carrying two single-base deletion alleles and one single-base insertion allele in exon 3, another homozygous in the single-base insertion allele. Both mutations cause a frameshift that leads to premature translation termination before the start of the protein's catalytic domain. Both cell lines totally lacked the APEX1 protein and AP site-cleaving activity, and showed significantly lower levels of the APEX1 transcript. The APEX1-null cells were unable to support BER on uracil- or AP site-containing substrates. Phenotypically, they showed a moderately increased sensitivity to methyl methanesulfonate (MMS; ~2-fold lower EC50 compared with wild-type cells), and their background level of natural AP sites detected by the aldehyde-reactive probe was elevated ~1.5-2-fold. However, the knockout lines retained a nearly wild-type sensitivity to oxidizing agents hydrogen peroxide and potassium bromate. Interestingly, despite the increased MMS cytotoxicity, we observed no additional increase in AP sites in knockout cells upon MMS treatment, which could indicate their conversion into more toxic products in the absence of repair. Overall, the relatively mild cell phenotype in the absence of APEX1-dependent BER suggests that mammalian cells possess mechanisms of tolerance or alternative repair of AP sites. The knockout derivatives of the extensively characterized HEK 293FT cell line may provide a valuable tool for studies of APEX1 in DNA repair and beyond.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Sistemas CRISPR-Cas/genética , Puntos de Control del Ciclo Celular , Reparación del ADN/efectos de los fármacos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Edición Génica , Células HEK293 , Humanos , Peróxido de Hidrógeno/química , Metilmetanosulfonato/farmacología , Fenotipo , ARN Guía de Kinetoplastida/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA