Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(17): 4861-4879, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37386918

RESUMEN

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions. Here, we use a machine learning approach to quantify the importance of environmental factors and apply it to generate spatial predictions of the species diversity of all trees (dbh ≥ 10 cm) and for very large trees (dbh ≥ 70 cm) using data from 243 forest plots (108,450 trees and 2832 species) distributed across different forest types and biogeographic regions of the Brazilian Amazon. The diversity of large trees and of all trees was significantly associated with three environmental factors, but in contrasting ways across regions and forest types. Environmental variables associated with disturbances, for example, the lightning flash rate and wind speed, as well as the fraction of photosynthetically active radiation, tend to govern the diversity of large trees. Upland rainforests in the Guiana Shield and Roraima regions had a high diversity of large trees. By contrast, variables associated with resources tend to govern tree diversity in general. Places such as the province of Imeri and the northern portion of the province of Madeira stand out for their high diversity of species in general. Climatic and topographic stability and functional adaptation mechanisms promote ideal conditions for species diversity. Finally, we mapped general patterns of tree species diversity in the Brazilian Amazon, which differ substantially depending on size class.


Asunto(s)
Aclimatación , Viento , Brasil , Bosque Lluvioso , Biodiversidad
2.
Nat Ecol Evol ; 5(6): 757-767, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795854

RESUMEN

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.


Asunto(s)
Bosques , Árboles , Biodiversidad , Brasil , Humanos
3.
New Phytol ; 229(4): 1995-2006, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33048346

RESUMEN

There is a consensus about negative impacts of droughts in Amazonia. Yet, extreme wet episodes, which are becoming as severe and frequent as droughts, are overlooked and their impacts remain poorly understood. Moreover, drought reports are mostly based on forests over a deep water table (DWT), which may be particularly sensitive to dry conditions. Based on demographic responses of 30 abundant tree species over the past two decades, in this study we analyzed the impacts of severe droughts but also of concurrent extreme wet periods, and how topographic affiliation (to shallow - SWTs - or deep - DWTs - water tables), together with species functional traits, mediated climate effects on trees. Dry and wet extremes decreased growth and increased tree mortality, but interactions of these climatic anomalies had the highest and most positive impact, mitigating the simple negative effects. Despite being more drought-tolerant, species in DWT forests were more negatively affected than hydraulically vulnerable species in SWT forests. Interaction of wet-dry extremes and SWT depth modulated tree responses to climate, providing buffers to droughts in Amazonia. As extreme wet periods are projected to increase and at least 36% of the Amazon comprises SWT forests, our results highlight the importance of considering these factors in order to improve our knowledge about forest resilience to climate change.


Asunto(s)
Sequías , Bosques , Brasil , Cambio Climático , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA